Optogenetic Modulation of Neural Progenitor Cells Improves Neuroregenerative Potential.

Int J Mol Sci

Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neural progenitor cell (NPC) transplantation possesses enormous potential for the treatment of disorders and injuries of the central nervous system, including the replacement of lost cells or the repair of host neural circuity after spinal cord injury (SCI). Importantly, cell-based therapies in this context still require improvements such as increased cell survival and host circuit integration, and we propose the implementation of optogenetics as a solution. Blue-light stimulation of NPCs engineered to ectopically express the excitatory light-sensitive protein channelrhodopsin-2 (ChR2-NPCs) prompted an influx of cations and a subsequent increase in proliferation and differentiation into oligodendrocytes and neurons and the polarization of astrocytes from a pro-inflammatory phenotype to a pro-regenerative/anti-inflammatory phenotype. Moreover, neurons derived from blue-light-stimulated ChR2-NPCs exhibited both increased branching and axon length and improved axon growth in the presence of axonal inhibitory drugs such as lysophosphatidic acid or chondroitin sulfate proteoglycan. Our results highlight the enormous potential of optogenetically stimulated NPCs as a means to increase neuroregeneration and improve cell therapy outcomes for enhancing better engraftments and cell identity upon transplantation in conditions such as SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794764PMC
http://dx.doi.org/10.3390/ijms22010365DOI Listing

Publication Analysis

Top Keywords

neural progenitor
8
enormous potential
8
optogenetic modulation
4
modulation neural
4
progenitor cells
4
cells improves
4
improves neuroregenerative
4
neuroregenerative potential
4
potential neural
4
cell
4

Similar Publications

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.

View Article and Find Full Text PDF

Dual Role of DLK1 in GnRH Neuron Ontogeny.

Stem Cell Rev Rep

September 2025

Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.

Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.

View Article and Find Full Text PDF

Human cord blood (CB) myeloid progenitor reprogramming to a high-fidelity human induced pluripotent stem cell (hiPSC) state can be achieved using non-integrating episomal vectors and stromal signals. These conventional, primed CB-hiPSC lines can subsequently be chemically reverted with high efficiencies to a blastomere-like Tankyrase/PARP Inhibitor-Regulated Naive Stem Cell (TIRN-SC) state with functional totipotency. PARP-regulated TIRN-SCs are human stem cells with high epigenetic plasticity, stable epigenomic imprints, and have greater differentiation potency than conventional, lineage-primed hiPSCs.

View Article and Find Full Text PDF

Traumatic Brain Injury (TBI) is a common and debilitating injury, causing long-lasting neurological deficits. Current therapeies for recovery remain inadequate, undersing the urgent need for innovative interventions. In this study, a novel therapeutic approach is introduced that delivers extracellular vesicles (EVs) derived from human-induced pluripotent stem cell-derived neural progenitor cells (hiPSC-NPCs) with a gelatin-based injectable bioorthogonal hydrogel (BIOGEL).

View Article and Find Full Text PDF