Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cancer has been a major public health problem worldwide for many centuries. Cancer is a complex disease associated with accumulative genetic mutations, epigenetic aberrations, chromosomal instability, and expression alteration. Increasing lines of evidence suggest that many non-coding transcripts, which are termed as non-coding RNAs, have important regulatory roles in cancer. In particular, long non-coding RNAs (lncRNAs) play crucial roles in tumorigenesis. Cancer-related lncRNAs serve as oncogenic factors or tumor suppressors. Although many lncRNAs are identified as potential regulators in tumorigenesis by using traditional experimental methods, they are time consuming and expensive considering the tremendous amount of lncRNAs needed. Thus, effective and fast approaches to recognize tumor-related lncRNAs should be developed. The proposed approach should help us understand not only the mechanisms of lncRNAs that participate in tumorigenesis but also their satisfactory performance in distinguishing cancer-related lncRNAs. In this study, we utilized a decision tree (DT), a type of rule learning algorithm, to investigate cancer-related lncRNAs with functional annotation contents [gene ontology (GO) terms and KEGG pathways] of their co-expressed genes. Cancer-related and other lncRNAs encoded by the key enrichment features of GO and KEGG filtered by feature selection methods were used to build an informative DT, which further induced several decision rules. The rules provided not only a new tool for identifying cancer-related lncRNAs but also connected the lncRNAs and cancers with the combinations of GO terms. Results provided new directions for understanding cancer-related lncRNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772407 | PMC |
http://dx.doi.org/10.3389/fgene.2020.598773 | DOI Listing |