Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objectives: Near-pure lung adenocarcinoma (ADC) subtypes demonstrate strong stratification of radiomic values, providing basic information for pathological subtyping. We sought to predict the presence of high-grade (micropapillary and solid) components in lung ADCs using quantitative image analysis with near-pure radiomic values.
Methods: Overall, 103 patients with lung ADCs of various histological subtypes were enrolled for 10-repetition, 3-fold cross-validation (cohort 1); 55 were enrolled for testing (cohort 2). Histogram and textural features on computed tomography (CT) images were assessed based on the "near-pure" pathological subtype data. Patch-wise high-grade likelihood prediction was performed for each voxel within the tumour region. The presence of high-grade components was then determined based on a volume percentage threshold of the high-grade likelihood area. To compare with quantitative approaches, consolidation/tumour (C/T) ratio was evaluated on CT images; we applied radiological invasiveness (C/T ratio > 0.5) for the prediction.
Results: In cohort 1, patch-wise prediction, combined model (C/T ratio and patch-wise prediction), whole-lesion-based prediction (using only the "near-pure"-based prediction model), and radiological invasiveness achieved a sensitivity and specificity of 88.00 ± 2.33% and 75.75 ± 2.82%, 90.00 ± 0.00%, and 77.12 ± 2.67%, 66.67% and 90.41%, and 90.00% and 45.21%, respectively. The sensitivity and specificity, respectively, for cohort 2 were 100.0% and 95.35% using patch-wise prediction, 100.0% and 95.35% using combined model, 75.00% and 95.35% using whole-lesion-based prediction, and 100.0% and 69.77% using radiological invasiveness.
Conclusion: Using near-pure radiomic features and patch-wise image analysis demonstrated high levels of sensitivity and moderate levels of specificity for high-grade ADC subtype-detecting.
Key Points: • The radiomic values extracted from lung adenocarcinoma with "near-pure" histological subtypes provide useful information for high-grade (micropapillary and solid) components detection. • Using near-pure radiomic features and patch-wise image analysis, high-grade components of lung adenocarcinoma can be predicted with high sensitivity and moderate specificity. • Using near-pure radiomic features and patch-wise image analysis has potential role in facilitating the prediction of the presence of high-grade components in lung adenocarcinoma prior to surgical resection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-020-07570-6 | DOI Listing |