Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Postictal generalized EEG suppression is the state of suppression of electrical activity at the end of a seizure. Prolongation of this state has been associated with increased risk of sudden unexpected death in epilepsy, making characterization of underlying electrical rhythmic activity during postictal suppression an important step in improving epilepsy treatment. Phase-amplitude coupling in EEG reflects cognitive coding within brain networks and some of those codes highlight epileptic activity; therefore, we hypothesized that there are distinct phase-amplitude coupling features in the postictal suppression state that can provide an improved estimate of this state in the context of patient risk for sudden unexpected death in epilepsy. We used both intracranial and scalp EEG data from eleven patients (six male, five female; age range 21-41 years) containing 25 seizures, to identify frequency dynamics, both in the ictal and postictal EEG suppression states. Cross-frequency coupling analysis identified that during seizures there was a gradual decrease of phase frequency in the coupling between delta (0.5-4 Hz) and gamma (30+ Hz), which was followed by an increased coupling between the phase of 0.5-1.5 Hz signal and amplitude of 30-50 Hz signal in the postictal state as compared to the pre-seizure baseline. This marker was consistent across patients. Then, using these postictal-specific features, an unsupervised state classifier-a hidden Markov model-was able to reliably classify four distinct states of seizure episodes, including a postictal suppression state. Furthermore, a connectome analysis of the postictal suppression states showed increased information flow within the network during postictal suppression states as compared to the pre-seizure baseline, suggesting enhanced network communication. When the same tools were applied to the EEG of an epilepsy patient who died unexpectedly, ictal coupling dynamics disappeared and postictal phase-amplitude coupling remained constant throughout. Overall, our findings suggest that there are active postictal networks, as defined through coupling dynamics that can be used to objectively classify the postictal suppression state; furthermore, in a case study of sudden unexpected death in epilepsy, the network does not show ictal-like phase-amplitude coupling features despite the presence of convulsive seizures, and instead demonstrates activity similar to postictal. The postictal suppression state is a period of elevated network activity as compared to the baseline activity which can provide key insights into the epileptic pathology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750942PMC
http://dx.doi.org/10.1093/braincomms/fcaa182DOI Listing

Publication Analysis

Top Keywords

postictal suppression
28
phase-amplitude coupling
20
suppression state
20
postictal
14
eeg suppression
12
sudden unexpected
12
unexpected death
12
death epilepsy
12
suppression states
12
suppression
11

Similar Publications

This study investigates the feasibility of using a two-channel subcutaneous EEG device (SubQ) to detect and monitor PGES. The SubQ device, developed by UNEEG Medical A/S, offers a minimally invasive alternative to scalp EEG, enabling ultra-long-term monitoring and remote data analysis. We used annotated scalp EEG data and data from the SubQ device.

View Article and Find Full Text PDF

Objective: Sudden unexpected death in epilepsy (SUDEP) is a major cause of epilepsy-related mortality, especially in patients with drug-resistant epilepsy. However, pediatric data remain limited, and specific risk assessment tools for children are lacking. This study evaluates the association between peri-ictal prone positioning, postictal generalized EEG suppression (PGES), and SUDEP-7 Inventory scores in pediatric patients with epilepsy.

View Article and Find Full Text PDF

How do brain networks limit seizure activity? In the Interictal Suppression Hypothesis, we recently postulated that high inward connectivity to seizure onset zones (SOZs) from non-involved zones (NIZs) is a sign of broader network suppression. If broad networks appear to be responsible for interictal SOZ suppression, what changes during seizure initiation, spread, and termination? For patients with drug-resistant epilepsy, intracranial monitoring offers a view into the electrographic networks which organize around and in response to the SOZ. In this manuscript, we investigate network dynamics in the peri-ictal periods to assess possible mechanisms of seizure suppression and the consequences of this suppression being overwhelmed.

View Article and Find Full Text PDF

Sudden unexpected death in epilepsy (SUDEP) is sudden, unexpected, witnessed or unwitnessed, nontraumatic, non-drowning death that occurs in a person with epilepsy. SUDEP is the leading cause of epilepsy-related death in adults with epilepsy, with an incidence of about 1.2 per 1000 person-years in the general epilepsy population.

View Article and Find Full Text PDF

Background: Long QT Syndrome Type-2 (LQT2) is due to loss-of-function KCNH2 variants. KCNH2 encodes K11.1 that forms a delayed-rectifier potassium channel in the brain and heart.

View Article and Find Full Text PDF