A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prediction of Major Depressive Disorder Following Beta-Blocker Therapy in Patients with Cardiovascular Diseases. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Incident depression has been reported to be associated with poor prognosis in patients with cardiovascular disease (CVD), which might be associated with beta-blocker therapy. Because early detection and intervention can alleviate the severity of depression, we aimed to develop a machine learning (ML) model predicting the onset of major depressive disorder (MDD). A model based on 1 regularized logistic regression was trained against the South Korean nationwide administrative claims database to identify risk factors for the incident MDD after beta-blocker therapy in patients with CVD. We identified 50,397 patients initiating beta-blockers for CVD, with 774 patients developing MDD within 365 days after initiating beta-blocker therapy. An area under the receiver operating characteristic curve (AUC) of 0.74 was achieved. A history of non-selective beta-blockers and factors related to anxiety disorder, sleeping problems, and other chronic diseases were the most strong predictors. AUCs of 0.62-0.71 were achieved in the external validation conducted on six independent electronic health records and claims databases in the USA and South Korea. In conclusion, an ML model that identifies patients at high-risk for incident MDD was developed. Application of ML to identify susceptible patients for adverse events of treatment may serve as an important approach for personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7766565PMC
http://dx.doi.org/10.3390/jpm10040288DOI Listing

Publication Analysis

Top Keywords

beta-blocker therapy
16
major depressive
8
depressive disorder
8
therapy patients
8
patients cardiovascular
8
incident mdd
8
patients
7
prediction major
4
beta-blocker
4
disorder beta-blocker
4

Similar Publications