JAMA Netw Open
September 2023
Objective: Development of electronic health records (EHR)-based machine learning models for pediatric inpatients is challenged by limited training data. Self-supervised learning using adult data may be a promising approach to creating robust pediatric prediction models. The primary objective was to determine whether a self-supervised model trained in adult inpatients was noninferior to logistic regression models trained in pediatric inpatients, for pediatric inpatient clinical prediction tasks.
View Article and Find Full Text PDFObjective: To describe the infrastructure, tools, and services developed at Stanford Medicine to maintain its data science ecosystem and research patient data repository for clinical and translational research.
Materials And Methods: The data science ecosystem, dubbed the Stanford Data Science Resources (SDSR), includes infrastructure and tools to create, search, retrieve, and analyze patient data, as well as services for data deidentification, linkage, and processing to extract high-value information from healthcare IT systems. Data are made available via self-service and concierge access, on HIPAA compliant secure computing infrastructure supported by in-depth user training.
EClinicalMedicine
April 2023
Objective: To characterise patients with and without prevalent hypertension and COVID-19 and to assess adverse outcomes in both inpatients and outpatients.
Design And Setting: This is a retrospective cohort study using 15 healthcare databases (primary and secondary electronic healthcare records, insurance and national claims data) from the USA, Europe and South Korea, standardised to the Observational Medical Outcomes Partnership common data model. Data were gathered from 1 March to 31 October 2020.
Cancer Epidemiol Biomarkers Prev
October 2021
Objectives: To characterize the demographics, comorbidities, symptoms, in-hospital treatments, and health outcomes among children and adolescents diagnosed or hospitalized with coronavirus disease 2019 (COVID-19) and to compare them in secondary analyses with patients diagnosed with previous seasonal influenza in 2017-2018.
Methods: International network cohort using real-world data from European primary care records (France, Germany, and Spain), South Korean claims and US claims, and hospital databases. We included children and adolescents diagnosed and/or hospitalized with COVID-19 at age <18 between January and June 2020.
Neuronal damage secondary to traumatic brain injury (TBI) is a rapidly evolving condition, which requires therapeutic decisions based on the timely identification of clinical deterioration. Changes in S100B biomarker levels are associated with TBI severity and patient outcome. The S100B quantification is often difficult since standard immunoassays are time-consuming, costly, and require extensive expertise.
View Article and Find Full Text PDFJ Am Med Inform Assoc
July 2021
Objective: To propose a paradigm for a scalable time-aware clinical data search, and to describe the design, implementation and use of a search engine realizing this paradigm.
Materials And Methods: The Advanced Cohort Engine (ACE) uses a temporal query language and in-memory datastore of patient objects to provide a fast, scalable, and expressive time-aware search. ACE accepts data in the Observational Medicine Outcomes Partnership Common Data Model, and is configurable to balance performance with compute cost.
Incident depression has been reported to be associated with poor prognosis in patients with cardiovascular disease (CVD), which might be associated with beta-blocker therapy. Because early detection and intervention can alleviate the severity of depression, we aimed to develop a machine learning (ML) model predicting the onset of major depressive disorder (MDD). A model based on 1 regularized logistic regression was trained against the South Korean nationwide administrative claims database to identify risk factors for the incident MDD after beta-blocker therapy in patients with CVD.
View Article and Find Full Text PDFmedRxiv
November 2020
medRxiv
October 2020
Background In this study we phenotyped individuals hospitalised with coronavirus disease 2019 (COVID-19) in depth, summarising entire medical histories, including medications, as captured in routinely collected data drawn from databases across three continents. We then compared individuals hospitalised with COVID-19 to those previously hospitalised with influenza. Methods We report demographics, previously recorded conditions and medication use of patients hospitalised with COVID-19 in the US (Columbia University Irving Medical Center [CUIMC], Premier Healthcare Database [PHD], UCHealth System Health Data Compass Database [UC HDC], and the Department of Veterans Affairs [VA OMOP]), in South Korea (Health Insurance Review & Assessment [HIRA]), and Spain (The Information System for Research in Primary Care [SIDIAP] and HM Hospitales [HM]).
View Article and Find Full Text PDFIn response to the challenges set forth by the CEGS N-GRID 2016 Shared Task in Clinical Natural Language Processing, we describe a framework to automatically classify initial psychiatric evaluation records to one of four positive valence system severities: absent, mild, moderate, or severe. We used a dataset provided by the event organizers to develop a framework comprised of natural language processing (NLP) modules and 3 predictive models (two decision tree models and one Bayesian network model) used in the competition. We also developed two additional predictive models for comparison purpose.
View Article and Find Full Text PDF