Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755200PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244176PLOS

Publication Analysis

Top Keywords

multiepitope based
8
based vaccine
8
mev
8
vaccine mev
8
mev sars-cov-2
8
highly antigenic
8
mhc class
8
vaccine
5
sars-cov-2
5
designing generation
4

Similar Publications

Moraxella catarrhalis is a Gram-negative diplococcus bacterium and a common respiratory pathogen, implicated in 15-20% of otitis media (OM) cases in children and chronic obstructive pulmonary disease (COPD) in adults. The rise of drug-resistant Moraxella catarrhalis has highlighted the urgent need for the potent vaccine strategies to reduce its clinical burden. Despite a mortality rate of 13%, there is no FDA-approved vaccine for this pathogen.

View Article and Find Full Text PDF

Antimicrobial resistance endangers global health by rapidly disseminating Multidrug-resistant (MDR) pathogens that undermine antibiotic therapies. P.aeruginosa, a high-priority ESKAPE pathogen, exemplifies the crisis with complex resistance mechanisms that demand alternative strategies beyond conventional antibiotics.

View Article and Find Full Text PDF

Chlamydia trachomatis is an obligate intracellular Gram-negative pathogen that causes sexually transmitted infections (STIs) and trachoma. Current interventions are limited due to the widespread nature of asymptomatic infections, and the absence of a licensed vaccine exacerbates the challenge. In this study, we predicted outer membrane β-barrel (OMBB) proteins and designed a multi-epitope vaccine (MEV) construct using identified proteins.

View Article and Find Full Text PDF

Background: Multi-epitope vaccines have become the preferred strategy for protection against infectious diseases by integrating multiple MHC-restricted T-cell and B-cell epitopes that elicit both humoral and cellular immune responses against pathogens. Computational methods address various aspects independently, yet their orchestration is technically challenging, as most bioinformatics tools are accessible through heterogeneous interfaces and lack interoperability features. The present work proposes a novel framework for rationalized multi-epitope vaccine design that streamlines end-to-end analyses through an integrated web-based environment.

View Article and Find Full Text PDF

Malaria has been a prominent health burden for decades globally. The complex life cycle of Plasmodium made numerous challenges in finding an effective candidate for developing a potent transmission-blocking vaccine (TBV) against malaria. A wide variety of genes of Anopheles mosquitoes' midgut and salivary gland play a pivotal role in the Plasmodium invasion and transmission inside the mosquito body.

View Article and Find Full Text PDF