A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A Chemical Approach for Programmable Protein Outputs Based on Engineered Cell Interactions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cell-cell interactions and communication are crucial to the proper function of complex mammalian physiology including neurocognitive and immune system functions. While many tools are available for observing and perturbing intracellular processes, relatively few exist to probe intercellular processes. Current techniques for studying interactions often rely on direct protein contact, and few can manipulate diverse, functional outputs with tunable protein expression. To address these limitations, we have developed a small-molecule approach based on a trimethoprim prodrug-enzyme pair capable of reporting the presence of two different engineered cell populations with programmable protein outputs. The approach relies on bacterial nitroreductase enzyme catalysis, which is orthogonal to normal mammalian biology, and diffusion of trimethoprim from "activator" cells to "receiver" cells. We test this strategy, which can theoretically regulate many different types of proteins, using biochemical and culture assays with optical and cytokine protein readouts. This describes the first small-molecule approach capable of detecting and controlling engineered cell-cell outputs, and we anticipate future applications that are especially relevant to the field of immuno-oncology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324041PMC
http://dx.doi.org/10.1021/acschembio.0c00935DOI Listing

Publication Analysis

Top Keywords

programmable protein
8
protein outputs
8
engineered cell
8
small-molecule approach
8
protein
5
chemical approach
4
approach programmable
4
outputs
4
outputs based
4
based engineered
4

Similar Publications