98%
921
2 minutes
20
Cardiovascular (CV) disease is one of the most prevalent public health concerns, and mounting evidence supports the contribution of environmental chemicals to CV disease burden. In this study, we performed cardiotoxicity profiling for the Tox21 chemical library by focusing on high-throughput screening (HTS) assays whose targets are associated with adverse events related to CV failure modes. Our objective was to develop new hypotheses around environmental chemicals of potential interest for adverse CV outcomes using Tox21/ToxCast HTS data. Molecular and cellular events linked to six failure modes of CV toxicity were cross-referenced with 1399 Tox21/ToxCast assays to identify cardio-relevant bioactivity signatures. The resulting 40 targets, measured in 314 assays, were integrated via a ToxPi visualization tool and ranking system to prioritize 1138 chemicals based upon formal integration across multiple domains of information. Filtering was performed based on cytotoxicity and generalized cell stress endpoints to try and isolate chemicals with effects specific to CV biology, and bioactivity- and structure-based clustering identified subgroups of chemicals preferentially affecting targets such as ion channels and vascular tissue biology. Our approach identified drugs with known cardiotoxic effects, such as estrogenic modulators like clomiphene and raloxifene, anti-arrhythmic drugs like amiodarone and haloperidol, and antipsychotic drugs like chlorpromazine. Several classes of environmental chemicals such as organotins, bisphenol-like chemicals, pesticides, and quaternary ammonium compounds demonstrated strong bioactivity against CV targets; these were compared to existing data in the literature (e.g., from cardiomyocytes, animal data, or human epidemiological studies) and prioritized for further testing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.0c00382 | DOI Listing |
Neurochem Res
September 2025
Biology and Health Laboratory, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes 6, 41012, Seville, Spain.
Marine ecosystems, particularly estuaries, are increasingly threatened by anthropogenic pressures. The Odiel Estuary has suffered severe contamination from acid mine drainage and industrial activities. Since 1986, mitigation efforts have been implemented, yet their long-term ecological effectiveness remains under-evaluated.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus.
Probiotics are live beneficial microorganisms that confer health benefits to the host when administered in adequate amounts, have gained considerable scientific and commercial interest for their ability to support gut health, strengthen immunity, and reduce disease risk. This review traces the genesis of probiotic science from its origins in traditional fermented foods to contemporary clinical applications, offering a conceptual understanding of its evolution. A clear distinction is drawn between endogenous probiotics, naturally resident in the human microbiome, and exogenous probiotics, introduced via dietary supplements and functional foods.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDF