98%
921
2 minutes
20
Livestock production has significant impacts on the environment, including due to the use of water. In this study, we provide a spatially explicit estimation of livestock blue water use, by analyzing feed crop water use and livestock drinking water. For the past four decades, livestock water use has increased from 145 km/year in 1971 to 270 km/year in 2012 with an increasing trend of 1.36%/year. The proportion of livestock drinking water use has remained relatively stable at around 10% of total water use attributable to livestock production. Several hotspots of water use, including eastern China, northern India, US high plains, are identified in terms of the long-term averages, while South America and Central Africa show the most rapidly increasing trends. In USA, climate change is found to contribute most to the changes in water use attributable to livestock, while feed cropping intensity and land use change are the dominant driver in China and India, respectively. Though, in total, livestock water use makes a relatively modest contribution to the Planetary Boundary (PB) that has been proposed for anthropogenic water use (4000 km/year), we argue that this aggregate number is not particularly meaningful, so we identify places where livestock is a major contributor to the unsustainable use of water, in northern India, part of the Middle East, Northern China and Central US. 7% of rivers where excessive water withdrawals mean that there is insufficient residual flow to sustain the aquatic environment (which we take to be the local manifestation of a PB) have been tipped over that boundary because of livestock farming, whilst in a further 34% of rivers, livestock farming on its own exceeds the water PB. Our results provide new and more geographically specific evidence about the impact that the meat industry makes on the PB for water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8155394 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2020.144035 | DOI Listing |
Macromol Biosci
September 2025
Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey.
The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has highlighted the critical need for safe and effective vaccines. In this study, subunit nanovaccine formulations were developed using the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein encapsulated in polymeric nanoparticles composed of poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL). Two surfactants, poly(vinyl alcohol) (PVA) and sodium cholate (SC), were evaluated during formulation via a modified water-in-oil-in-water (w/o/w) emulsion-solvent evaporation method.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Applied Chemistry, College of Science, China Agriculture University, Beijing 100091, China.
l-glufosinate has garnered increasing attention as an ideal herbicide for weed control in agriculture. However, the underlying racemization process of l-glufosinate in the aqueous phase remains unclear. In this work, we elucidated the racemization mechanisms through heating reactions and theoretical calculations.
View Article and Find Full Text PDFIntegr Environ Assess Manag
September 2025
Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
Pesticides are widely used to meet the food demands of a growing population, with various types used to control pests depending on the crops grown. Rainfall, overspray, and runoff from agricultural fields can wash these insecticides into water bodies, posing documented environmental risks. Imidacloprid is commonly used in Afrotropical regions such as South Africa, yet limited information is available on its toxicity to aquatic ecosystems within this climate region.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, China.
At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.
View Article and Find Full Text PDFEnviron Toxicol Chem
September 2025
Statistical Ecotoxicology, University of Bayreuth, Bayreuth, Germany.
Several micro- and nanoplastic particle (MNP) traits, like polymer type, size, and shape, have been shown to influence MNP toxicity. However, the direction and strength of these moderating effects are often unclear, and generalizations from single studies are challenging to establish. Meta-analyses increase generalizability and derive more accurate and precise effect size estimates by combining measurements from published studies.
View Article and Find Full Text PDF