98%
921
2 minutes
20
Adaptive behavior emerges through a dynamic interaction between cognitive agents and changing environmental demands. The investigation of information processing underlying adaptive behavior relies on controlled experimental settings in which individuals are asked to accomplish demanding tasks whereby a hidden regularity or an abstract rule has to be learned dynamically. Although performance in such tasks is considered as a proxy for measuring high-level cognitive processes, the standard approach consists in summarizing observed response patterns by simple heuristic scoring measures. With this work, we propose and validate a new computational Bayesian model accounting for individual performance in the Wisconsin Card Sorting Test (WCST), a renowned clinical tool to measure set-shifting and deficient inhibitory processes on the basis of environmental feedback. We formalize the interaction between the task's structure, the received feedback, and the agent's behavior by building a model of the information processing mechanisms used to infer the hidden rules of the task environment. Furthermore, we embed the new model within the mathematical framework of the Bayesian Brain Theory (BBT), according to which beliefs about hidden environmental states are dynamically updated following the logic of Bayesian inference. Our computational model maps distinct cognitive processes into separable, neurobiologically plausible, information-theoretic constructs underlying observed response patterns. We assess model identification and expressiveness in accounting for meaningful human performance through extensive simulation studies. We then validate the model on real behavioral data in order to highlight the utility of the proposed model in recovering cognitive dynamics at an individual level. We highlight the potentials of our model in decomposing adaptive behavior in the WCST into several information-theoretic metrics revealing the trial-by-trial unfolding of information processing by focusing on two exemplary individuals whose behavior is examined in depth. Finally, we focus on the theoretical implications of our computational model by discussing the mapping between BBT constructs and functional neuroanatomical correlates of task performance. We further discuss the empirical benefit of recovering the assumed dynamics of information processing for both clinical and research practices, such as neurological assessment and model-based neuroscience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7713598 | PMC |
http://dx.doi.org/10.7717/peerj.10316 | DOI Listing |
Pest Manag Sci
September 2025
Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.
Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.
View Article and Find Full Text PDFMater Today Bio
October 2025
School of Pharmacy, Henan Medical University, Xinxiang, Henan, China.
Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.
View Article and Find Full Text PDFFront Public Health
September 2025
Department of Personnel Strategies, Institute of Management, Collegium of Management and Finance, SGH Warsaw School of Economics, Warsaw, Poland.
Introduction: Organizational resilience is of paramount importance for coping with adversity, particularly in the healthcare sector during crises. The objective of the present study was to evaluate the impact of resilience-based interventions on the well-being of healthcare employees during the pandemic. In this study, resilience-based interventions are defined as organizational actions that strengthen a healthcare institution's capacity to cope with crises-such as ensuring adequate personal protective equipment and staff testing, clear risk-communication, alternative care pathways (e.
View Article and Find Full Text PDFAlpha Psychiatry
August 2025
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, 100875 Beijing, China.
Background: Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder marked by impaired interactions and restricted interests, the pathophysiology of which is not fully understood. The current study explored the potential therapeutic effects of transcranial direct current stimulation (tDCS) on the neurophysiological aspects of ASD, specifically focusing on the brain's excitatory/inhibitory (E/I) balance and behavioral outcomes, providing scientific guidance for ASD intervention.
Methods: Forty-two children with ASD were randomly divided into either an active tDCS or sham tDCS group.
Alpha Psychiatry
August 2025
Department of Pharmacology, School of Pharmaceutical Science, Ohu University, Koriyama, 963-8611 Fukushima, Japan.
Objective: Hypothalamic‒pituitary‒adrenal axis response is essential for coping with acute stressors, while maladaptive stress coping may increase the risk of major depressive disorder. We previously demonstrated that behavioral patterns induced by prior psychological stress predict coping levels in response to future stressors. This study investigated whether activating corticotropin-releasing hormone (CRH) and corticosteroid receptors mediates psychological stress-induced coping behavior.
View Article and Find Full Text PDF