98%
921
2 minutes
20
Inhalation of multi-walled carbon nanotubes (MWCNTs) induces lung inflammation. Depending on industrial applications, CNTs with different physicochemical characteristics are produced and workers can potentially be exposed. This raises concerns about the long-term health effects of these nanomaterials. Because of the wide variety of MWCNTs, it is essential to study the toxicological effects of CNTs of various shapes and to better understand the impact physical and chemical properties have on their toxicity. In this study, rats were exposed by nose-only to two pristine MWCNTs with different morphologies: the long and thick NM-401 or the short and thin NM-403. After four weeks of inhalation, animals were euthanized at four different times during the recovery period: three days (short-term), 30 and 90 days (intermediate-term) and 180 days (long-term). Analyses of the transcriptome in the whole lung and the proteome in the bronchoalveolar lavage fluid of exposed animals were performed to understand the MWCNT underlying mechanisms of toxicity. Following inhalation of NM-401, we observed a dose-dependent increase in the number of differentially expressed genes and proteins, whereas there is no clear difference between the two concentrations of NM-403. After NM-403 inhalation, the number of differentially expressed genes and proteins varied less between the four post-exposure times compared to NM-401, which supports the postulation of a persistent effect of this type of CNT. Our toxicogenomics approaches give insights into the different toxicological profile following MWCNT exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17435390.2020.1851418 | DOI Listing |
Environ Sci Pollut Res Int
September 2025
School of Chemical Engineering, State University of Campinas-Universidade Estadual de Campinas, Albert Einstein Av., 500, Campinas, SP, 13083-852, Brazil.
Bisphenol A (BPA) is a persistent organic pollutant with toxic effects on human health and ecosystems. In this study, the performance of MWCNT-OH functionalized with iron nanoparticles (MWCNT-OH@Fe) using sugarcane bagasse extract as a reducing agent (green synthesis) was evaluated for BPA adsorption. The kinetics are fast, between 10 and 20 min in the range of concentrations evaluated and the resistance to external film diffusion (external film mass transfer) identified as the rate-limiting step of the process.
View Article and Find Full Text PDFRSC Adv
August 2025
Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos" Agia Paraskevi 15341 Greece.
In this study, porous polysiloxane (PS)/multi-walled carbon nanotube (MWCNT) nanocomposite films were developed as high-performance triboelectric layers for flexible triboelectric nanogenerators (TENGs). TENGs convert mechanical motion into electricity and offer a promising solution for self-powered electronic systems. The nanocomposites were fabricated using a doctor blading method, and porosity was introduced a simple, scalable salt-leaching technique.
View Article and Find Full Text PDFMikrochim Acta
September 2025
National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei Street, 060021, Bucharest, Romania.
Molecular recognition and determination of vascular cell adhesion molecule-1 (VCAM-1), interleukin-6 (IL-6), and natriuretic peptide C-type (NPPC) are essential for the early prognosis and diagnosis of cardiovascular diseases, especially in young obese populations. Highly sensitive and selective devices characterized by low Limits of quantification are required for their determination in whole blood. Therefore, a 3D stochastic sensor was developed by immobilizing a chitosan hydrogel onto a carbon paste electrode (used as the support matrix for the hydrogel), which was subsequently modified with gold nanoparticles, multi-walled carbon nanotubes, and β-cyclodextrin (β-CD/AuNPs@MWCNT/CS/CPE).
View Article and Find Full Text PDFSmall
September 2025
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
Droplet electricity generators (DEGs) that generate electricity through the interplay between water and the dielectric materials have attracted growing research interest due to their remarkable output voltage. However, conventional DEG design faces a critical trade-off: regulating the properties of dielectric materials, such as thickness or permittivity, can enhance output voltage yet weaken transferred charge. Here, a fluorinated ethylene propylene (FEP)/multi-walled carbon nanotubes (MWCNTs)/polydimethylsiloxane (PDMS) composite-based droplet electricity generator (FMP-DEG) is presented to overcome the voltage-charge trade-off and thus achieve an enhanced energy conversion efficiency of 4.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Department of Innovative Vehicles and Materials, GAMF Faculty of Engineering and Computer Science, John von Neumann University, Izsáki út 10., H-6000 Kecskemét, Hungary.
In this study, we developed polypropylene-based nanocomposites using different (0.3, 0.5, and 1 wt%) fillers of multi-walled carbon nanotubes (MWCNTs), with a particular focus on their applicability as lining materials for Type IV hydrogen storage tanks.
View Article and Find Full Text PDF