98%
921
2 minutes
20
Plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth but also control phytopathogens and mitigate abiotic stresses, including water-deficit stress. In this study, 21 (26.9%) rhizobacterial strains isolated from drought-prone ecosystems of Bangladesh were able to form air-liquid (AL) biofilms in the glass test tubes containing salt-optimized broth plus glycerol (SOBG) medium. Based on 16S rRNA gene sequencing, (ESR3 and ESR15), ESR4, ESR6, (ESR7 and ESR25), ESR9, (ESR12, ESR16, and ESR23), (ESR13 and ESR21), ESB18, ESR20, (ESD3, ESD21, and ESB22), ESD16, ESB6, ESB9, and ESD8 were identified. Fourier transform infrared spectroscopy studies showed that the biofilm matrices contain proteins, polysaccharides, nucleic acids, and lipids. Congo red binding results indicated that these bacteria produced curli fimbriae and nanocellulose-rich polysaccharides. Expression of nanocellulose was also confirmed by Calcofluor binding assays and scanning electron microscopy. studies revealed that all these rhizobacterial strains expressed multiple plant growth-promoting traits including N fixation, production of indole-3-acetic acid, solubilization of nutrients (P, K, and Zn), and production of ammonia, siderophores, ACC deaminase, catalases, lipases, cellulases, and proteases. Several bacteria were also tolerant to multifarious stresses such as drought, high temperature, extreme pH, and salinity. Among these rhizobacteria, ESR12, ESR15, and ESD3 impeded the growth of pv. ATCC 33913, while ESR15 and ESD21 prevented the progression of ATCC 11696. In a pot experiment, tomato plants inoculated with ESR4, ESR6, ESR9, ESR12, ESR15, ESR20, ESR21, and ESB6 exhibited an increased plant growth compared to the non-inoculated plants under water deficit-stressed conditions. Accordingly, the bacterial-treated plants showed a higher antioxidant defense system and a fewer tissue damages than non-inoculated plants under water-limiting conditions. Therefore, biofilm-producing PGPR can be utilized as plant growth promoters, suppressors of plant pathogens, and alleviators of water-deficit stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727330 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.542053 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
IQRAA Centre for Research and Development, IQRAA International Hospital and Research Centre, Kozhikode, Kerala, India.
Terminalia arjuna, an important medicinal plant in traditional Indian systems, has been extensively studied for its cardioprotective bark. However, limited attention has been given to its fruit, which contains several biologically active phytochemicals with potential antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed to isolate and partially purify phytoactive compounds from the fruit of T.
View Article and Find Full Text PDFJ Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, PB.901, 2050, Hammam-Lif, Tunisia. Electronic address:
Climate change is challenging agriculture and food security due to the limited adaptability of domesticated crops. While plant range shifts along latitudinal and altitudinal gradients are well-documented, their impacts on belowground microbial communities and plant adaptability remain poorly understood. Vitis vinifera subsp.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt. Electronic address:
The growing demand for sustainable agriculture imposes innovative biocontrol strategies to mitigate phytopathogen threats while reducing dependence on chemical pesticides. This review explores the current knowledge on enzyme-based biocontrol, focusing on hydrolytic enzymes (e.g.
View Article and Find Full Text PDFSci Total Environ
September 2025
Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; KNU NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea; Microblance Inc., Daegu 41566, Republic of Korea. Electronic address:
Abandoned mines have created extensive idle areas contaminated with heavy metals (HMs). Conventional remediation methods are often costly, environmentally disruptive, and pose risks to human health. As a sustainable alternative, a biological approach utilizing metal-tolerant plant growth-promoting bacteria (mPGPBs) was employed to remediate HM-contaminated soils and assess their biological safety.
View Article and Find Full Text PDF