98%
921
2 minutes
20
Microtubules (MTs) and F-actin (F-act) have long been recognized as key regulators of dendritic morphology. Nevertheless, precisely ascertaining their distinct influences on dendritic trees have been hampered until now by the lack of direct, arbor-wide cytoskeletal quantification. We pair live confocal imaging of fluorescently labeled dendritic arborization (da) neurons in Drosophila larvae with complete multi-signal neural tracing to separately measure MTs and F-act. We demonstrate that dendritic arbor length is highly interrelated with local MT quantity, whereas local F-act enrichment is associated with dendritic branching. Computational simulation of arbor structure solely constrained by experimentally observed subcellular distributions of these cytoskeletal components generated synthetic morphological and molecular patterns statistically equivalent to those of real da neurons, corroborating the efficacy of local MT and F-act in describing dendritic architecture. The analysis and modeling outcomes hold true for the simplest (class I), most complex (class IV), and genetically altered (Formin3 overexpression) da neuron types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725934 | PMC |
http://dx.doi.org/10.1016/j.isci.2020.101865 | DOI Listing |
Crit Rev Immunol
September 2025
Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.
Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, 1107 2020 Beirut, Lebanon.
Fractal growth in reaction-diffusion frameworks (RDF) offers a powerful paradigm for understanding self-assembly in chemical and materials systems. However, its connection to diffusion-limited aggregation (DLA) remains underexplored. Here, we present the first quantitative demonstration of RDF-driven fractal crystallization of benzoic acid (BA), revealing a direct correlation among fractal dimension, diffusion rate, and gel-matrix chemistry.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710.
In the brain, G protein-coupled receptors (GPCRs) regulate neuronal excitability, synaptic transmission, and behavior by engaging transcriptional and translational programs that produce enduring changes in cellular function and architecture. However, the molecular mechanisms that couple GPCR activation to these adaptations remain poorly understood. Here, we demonstrate that the beta-adrenergic receptor (β2AR), a mediator of noradrenaline in the central nervous system, remodels neuronal morphology through compartmentalized signaling pathways that orchestrate distinct layers of gene regulation.
View Article and Find Full Text PDFChemSusChem
September 2025
State Key Laboratory of Flexible Electronics (LoFE), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
The increasing demand for flexible and portable electronic devices has spurred significant interest in flexible lithium batteries, particularly those utilizing fluoropolymer electrolytes. This review explores the current advancements in the development of fluoropolymer-based solid polymer electrolytes and composite polymer electrolytes, highlighting their unique properties, including high ionic conductivity, electrochemical stability, and mechanical flexibility. Despite their advantages, challenges such as low ionic conductivity due to high crystallinity and dendrite formation during lithium deposition remain critical barriers to commercialization.
View Article and Find Full Text PDFSmall Methods
September 2025
Institute for Materials Discovery, University College London, London, WC1E 7JE, UK.
The development of planar on-chip micro-batteries with high-capacity electrodes and environmentally friendly and stable architectures is critical for powering the next generation of miniaturized system-on-chip smart devices. However, realizing highly stable micro-batteries remains a major challenge due to complex fabrication processes, electrode degradation during cycling, and the uncontrolled growth of dendrites in metal-based anodes within the confined spaces between electrodes. To address these issues, this study presents an approach that incorporates a 3D porous nickel (Ni) scaffold at the metal anode, offering improved micro-anode stability compared to conventional planar zinc and 3D porous zinc (Zn) scaffolds.
View Article and Find Full Text PDF