Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microfluidic devices are traditionally monitored by bulky and expensive off-chip sensors. We have developed a soft piezoresistive sensor capable of measuring micron-level strains that can be easily integrated into devices via soft lithography. We apply this sensor to achieve fast and localized monitoring of pressure, flow, and valve actuation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9521707PMC
http://dx.doi.org/10.1039/d0lc01046dDOI Listing

Publication Analysis

Top Keywords

high-resolution integrated
4
integrated piezoresistive
4
piezoresistive sensors
4
sensors microfluidic
4
microfluidic monitoring
4
monitoring microfluidic
4
microfluidic devices
4
devices traditionally
4
traditionally monitored
4
monitored bulky
4

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

Background: Gastroesophageal reflux disease has a prevalence of 12% in the Brazilian population. Its treatment includes hygienic-dietary changes, use of medications and, in selected cases, surgery with laparos-copic hiatoplasty and Nissen total fundoplication. However, this last treatment modality presents risks of postoperative dysphagia.

View Article and Find Full Text PDF

Catalyzing computational biology research at an academic institute through an interest network.

PLoS Comput Biol

September 2025

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America.

Biology has been transformed by the rapid development of computing and the concurrent rise of data-rich approaches such as, omics or high-resolution imaging. However, there is a persistent computational skills gap in the biomedical research workforce. Inherent limitations of classroom teaching and institutional core support highlight the need for accessible ways for researchers to explore developments in computational biology.

View Article and Find Full Text PDF

Thyroid eye disease (TED) is a prevalent autoimmune orbital disorder that can severely impair visual function and significantly diminish patients' quality of life. In recent years, several studies have attempted to automate TED diagnosis using optical coherence tomography (OCT) images. However, existing approaches primarily rely on convolutional neural networks (CNNs) combined with attention mechanisms and are mostly trained using traditional cross-entropy loss.

View Article and Find Full Text PDF

Nano-laminography with a transmission X-ray microscope.

J Synchrotron Radiat

November 2025

Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.

Nano-laminography combines the penetrating power of hard X-rays with a tilted rotational geometry to deliver high-resolution, three-dimensional images of laterally extended, flat specimens that are otherwise incompatible with, or difficult to image using, conventional nano-tomography. In this work, we demonstrate a full-field, X-ray nano-laminography system implemented with the transmission X-ray microscope at beamline 32-ID of the upgraded Advanced Photon Source at Argonne National Laboratory, USA. By rotating the sample around an axis inclined by 20° to the incident beam, the technique minimizes the long optical path lengths that would otherwise generate excessive artifacts when planar samples are imaged edge-on.

View Article and Find Full Text PDF