Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The privacy of Electronic Health Records (EHRs) is facing a major hurdle with outsourcing private health data in the cloud as there exists danger of leaking health information to unauthorized parties. In fact, EHRs are stored on centralized databases that increases the security risk footprint and requires trust in a single authority which cannot effectively protect data from internal attacks. This research focuses on ensuring the patient privacy and data security while sharing the sensitive data across same or different organisations as well as healthcare providers in a distributed environment. This research develops a privacy-preserving framework viz Healthchain based on Blockchain technology that maintains security, privacy, scalability and integrity of the e-health data. The Blockchain is built on Hyperledger fabric, a permissioned distributed ledger solutions by using Hyperledger composer and stores EHRs by utilizing InterPlanetary File System (IPFS) to build this healthchain framework. Moreover, the data stored in the IPFS is encrypted by using a unique cryptographic public key encryption algorithm to create a robust blockchain solution for electronic health data. The objective of the research is to provide a foundation for developing security solutions against cyber-attacks by exploiting the inherent features of the blockchain, and thus contribute to the robustness of healthcare information sharing environments. Through the results, the proposed model shows that the healthcare records are not traceable to unauthorized access as the model stores only the encrypted hash of the records that proves effectiveness in terms of data security, enhanced data privacy, improved data scalability, interoperability and data integrity while sharing and accessing medical records among stakeholders across the healthchain network.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7725426 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243043 | PLOS |