98%
921
2 minutes
20
H3K9 methyltransferase (G9a) and its relevant molecule GLP are the SET domain proteins that specifically add mono, di and trimethyl groups on to the histone H3K9, which lead to the transcriptional inactivation of chromatin and reduce the expression of cancer suppressor genes, which trigger growth and progress of several cancer types. Various studies have demonstrated that overexpression of H3K9 methyltransferase G9a and GLP in different kinds of tumors, like lung, breast, bladder, colon, cervical, gastric, skin cancers, hepatocellular carcinoma and hematological malignancies. Several G9a and GLP inhibitors such as BIX-01294, UNC0642, A-366 and DCG066 were developed to combat various cancers; however, there is a need for more effective and less toxic compounds. The current molecular docking study suggested that the selected new compounds such as ninhydrin, naphthoquinone, cysteamine and disulfide cysteamine could be suitable molecules as a G9a and GLP inhibitors. Furthermore, detailed cell based and preclinical animal studies are required to confirm their properties. In the current review, we discussed the role of G9a and GLP mediated epigenetic regulation in the cancers. A thorough literature review was done related to G9a and GLP. The databases used extensively for retrieval of information were PubMed, Medline, Scopus and Science-direct. Further, molecular docking was performed using Maestro Schrodinger version 9.2 software to investigate the binding profile of compounds with Human G9a HMT (PDB ID: 3FPD, 3RJW) and Human GLP MT (PDB ID: 6MBO, 6MBP).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbt.22674 | DOI Listing |
J Med Chem
September 2025
SANKEN, The University of Osaka, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, JAPAN.
G9a and G9a-like protein (GLP) are histone methyltransferases that regulate epigenetics by adding methyl groups to histone H3, thereby controlling gene expression. G9a/GLP dysregulation and overexpression have been reported to cause cancer proliferation, progression, and metastasis. So far, quinazoline-based inhibitors and degraders have been frequently used as chemical tools to elucidate the role of G9a/GLP.
View Article and Find Full Text PDFDiabetes
August 2025
Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL.
Unlabelled: Metabolic stress elicits functional changes in pancreatic islets, contributing to the pathogenesis of type 2 diabetes. However, the molecular mechanisms underlying overnutrition stress in islet cells is not well understood. In our study, we subjected human islets to overnutrition with 25 mmol/L glucose and 0.
View Article and Find Full Text PDFCells
June 2025
Department of Neuroscience, Penn State University College of Medicine, Hershey, PA 17033, USA.
We have previously demonstrated the ability of inhibitors of LSD1 and HDAC1 to block rod degeneration, preserve vision, maintain transcription of rod photoreceptor genes, and downregulate transcripts involved in cell death, gliosis, and inflammation in the mouse model of Retinitis Pigmentosa (RP), rd10. To extend our findings, we tested the hypothesis that this effect was due to altered chromatin structure by using a range of inhibitors of chromatin condensation to prevent photoreceptor degeneration in the rd10 mouse model. We used inhibitors for both G9A/GLP, which catalyzes methylation of H3K9, and EZH2, which catalyzes trimethylation of H3K27, and compared them to the actions of inhibitors of LSD1 and HDAC.
View Article and Find Full Text PDFbioRxiv
July 2025
Department of Biochemistry, Stanford University School of Medicine.
Centromeres are essential chromosomal regions that ensure accurate genome segregation during cell division. They are organized into epigenetically discrete compartments: a Centromere Protein A (CENP-A)-rich core for microtubule attachment and surrounding heterochromatic pericentromeres that promote cohesion. Despite their importance, the mechanisms that define, enforce and partition these chromatin domains remain poorly understood.
View Article and Find Full Text PDFNat Commun
July 2025
Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
Prader-Willi Syndrome (PWS) is caused by the loss of expression of paternally expressed genes in the human 15q11.2-q13 imprinting domain. A set of imprinted genes that are active on the paternal but silenced on the maternal chromosome are intricately regulated by a bipartite imprinting center (PWS-IC) located in the PWS imprinting domain.
View Article and Find Full Text PDF