A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd) is a biologically non-essential and toxic heavy metal leaking to the environment via natural emission or anthropogenic activities, thereby contaminating crops and threatening human health. Metallothioneins (MTs) are a group of metal-binding proteins playing critical roles in metal allocation and homeostasis. In this study, we identified a novel function of OsMT1e from rice plants. OsMT1e was dominantly expressed in roots at all developmental stages and, to less extent, expressed in leaves at vegetative and seed filling stages. OsMT1e was mainly targeted to the nucleus and substantially induced by Cd exposure. Expression of OsMT1e in a yeast Cd-sensitive strain ycf1 conferred cellular tolerance to Cd, even though the ycf1 + OsMT1e cells accumulated more Cd than the control cells (ycf1 + pYES2). Both transgenic rice overexpressing (OX) and repressing OsMT1e by RNA interference (RNAi) were developed. Phenotypic analysis revealed that OsMT1e overexpression enhanced the rice growth concerning the increased shoot or root elongation, dry weight and chlorophyll contents, whereas the RNAi lines displayed a sensitive growth phenotype compared to wild-type. Assessment with 0.5, 2 and 10 μM Cd for two weeks revealed that the RNAi lines accumulated less Cd, while the OX lines had an increased Cd accumulation in root and shoot tissues. The contrasting Cd accumulation phenotypes between the OX and RNAi lines were further confirmed by a long-term study with 0.5 μM Cd for one month. Overall, the study unveiled a new function of OsMT1e in rice, which can be potentially used for engineering genotypes for phytoremediation or minimizing Cd in rice crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2020.129136DOI Listing

Publication Analysis

Top Keywords

rnai lines
12
osmt1e
8
function osmt1e
8
osmt1e rice
8
rice
5
identification function
4
function metallothionein-like
4
metallothionein-like gene
4
gene osmt1e
4
osmt1e cadmium
4

Similar Publications