Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Multiparental populations are located midway between association mapping that relies on germplasm collections and classic linkage analysis, based upon biparental populations. They provide several key advantages such as the possibility to include a higher number of alleles and increased level of recombination with respect to biparental populations, and more equilibrated allelic frequencies than association mapping panels. Moreover, in these populations new allele's combinations arise from recombination that may reveal transgressive phenotypes and make them a useful pre-breeding material. Here we describe the strategies for working with multiparental populations, focusing on nested association mapping populations (NAM) and multiparent advanced generation intercross populations (MAGIC). We provide details from the selection of founders, population development, and characterization to the statistical methods for genetic mapping and quantitative trait detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1201-9_2 | DOI Listing |