Background: Tomato mating systems were strongly affected by domestication events. Mutations disrupting self-incompatibility paralleled by changes retracting the stigma position (SP) within the staminal cone conferred strict autogamy and self-fertility to the cultivated forms. Although major genes affecting these changes have been identified, SP control in domesticated forms that retain a constitutive or heat-inducible noninserted SP needs elucidation.
View Article and Find Full Text PDFThe stable production of high vigorous seeds is pivotal to crop yield. Also, a high longevity is essential to avoid progressive loss of seed vigour during storage. Both seed traits are strongly influenced by the environment during seed development.
View Article and Find Full Text PDFTomato is a widely cultivated crop, which can grow in many environments. However, temperature above 30°C impairs its reproduction, subsequently impacting fruit yield. We assessed the impact of high-temperature stress (HS) in two tomato experimental populations, a multi-parental advanced generation intercross (MAGIC) population and a core-collection (CC) of small-fruited tomato accessions.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
Multiparental populations are located midway between association mapping that relies on germplasm collections and classic linkage analysis, based upon biparental populations. They provide several key advantages such as the possibility to include a higher number of alleles and increased level of recombination with respect to biparental populations, and more equilibrated allelic frequencies than association mapping panels. Moreover, in these populations new allele's combinations arise from recombination that may reveal transgressive phenotypes and make them a useful pre-breeding material.
View Article and Find Full Text PDFTocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway.
View Article and Find Full Text PDFWater deficit (WD) leads to significant phenotypic changes in crops resulting from complex stress regulation mechanisms involving responses at the physiological, biochemical and molecular levels. Tomato growth and fruit quality have been shown to be significantly affected by WD stress. Understanding the molecular mechanism underlying response to WD is crucial to develop tomato cultivars with relatively high performance under low watering conditions.
View Article and Find Full Text PDFDeciphering the genetic basis of phenotypic plasticity and genotype × environment interactions (G×E) is of primary importance for plant breeding in the context of global climate change. Tomato (Solanum lycopersicum) is a widely cultivated crop that can grow in different geographical habitats and that displays a great capacity for expressing phenotypic plasticity. We used a multi-parental advanced generation intercross (MAGIC) tomato population to explore G×E and plasticity for multiple traits measured in a multi-environment trial (MET) comprising optimal cultural conditions together with water deficit, salinity, and heat stress over 12 environments.
View Article and Find Full Text PDFTomato (Solanum lycopersicum), which is used for both processing and fresh markets, is a major crop species that is the top ranked vegetable produced over the world. Tomato is also a model species for research in genetics, fruit development and disease resistance. Genetic resources available in public repositories comprise the 12 wild related species and thousands of landraces, modern cultivars and mutants.
View Article and Find Full Text PDFQuality is a key trait in plant breeding, especially for fruit and vegetables. Quality involves several polygenic components, often influenced by environmental conditions with variable levels of genotype × environment interaction that must be considered in breeding strategies aiming to improve quality. In order to assess the impact of water deficit and salinity on tomato fruit quality, we evaluated a multi-parent advanced generation intercross (MAGIC) tomato population in contrasted environmental conditions over 2 years, one year in control vs.
View Article and Find Full Text PDF