Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An approach is proposed and illustrated for the joint selection of essential samples and essential variables of a data matrix in the frame of spectral unmixing. These essential features carry the signals required to linearly recover all the information available in the rows and columns of a data set. Working with hyperspectral images, this approach translates into the selection of essential spectral pixels (ESPs) and essential spatial variables (ESVs). This results in a highly-reduced data set, the benefits of which can be minimized computational effort, meticulous data mining, easier model building as well as better problem understanding or interpretation. Working with both simulated and real data, we show that (i) reduction rates of over 99% can be typically obtained, (ii) multivariate curve resolution - alternating least squares (MCR-ALS) can be easily applied on the reduced data sets and (iii) the full distribution maps and spectral profiles can be readily obtained from the reduced profiles and the reduced data sets (without using the full data matrix).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2020.10.040DOI Listing

Publication Analysis

Top Keywords

selection essential
12
joint selection
8
essential variables
8
hyperspectral images
8
images approach
8
data
8
data matrix
8
data set
8
reduced data
8
data sets
8

Similar Publications

Introduction: The role of imaging in radiotherapy is becoming increasingly important. Verification of imaging parameters prior to treatment planning is essential for safe and effective clinical practice.

Methods: This study described the development and clinical implementation of ImageCompliance, an automated, GUI-based script designed to verify and enforce correct CT and MRI parameters during radiotherapy planning.

View Article and Find Full Text PDF

During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.

View Article and Find Full Text PDF

Serine protease inhibitors (SERPINs) are involved in various physiological processes and diseases, such as inflammation, cancer metastasis, and neurodegeneration. Their role in viral infections is poorly understood, as their expression patterns during infection and the range of proteases they target have yet to be fully characterized. Here, we show widespread expression of human SERPINs in response to respiratory virus infections, both in bronchioalveolar lavages from COVID-19 patients and in polarized human airway epithelial cultures.

View Article and Find Full Text PDF

Introduction: Metastatic breast cancer (mBC) is a major global health challenge. Antibody-drug conjugates (ADCs), including trastuzumab emtansine (T-DM1), trastuzumab deruxtecan (T-DXd), and sacituzumab govitecan (SG), offer clinical benefits but are associated with high costs, making cost-effectiveness assessments essential for policy decisions.

Methods: This systematic review analyzed economic evaluations comparing T-DM1, T-DXd, and SG with conventional treatments in breast cancer.

View Article and Find Full Text PDF

Machine Learning-Aided Screening and Design Rule Discovery for LWIR-Transparent Optical Materials.

J Chem Inf Model

September 2025

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States.

The development of low-cost, high-performance materials with enhanced transparency in the long-wavelength infrared (LWIR) region (800-1250 cm/8-12.5 μm) is essential for advancing thermal imaging and sensing technologies. Traditional LWIR optics rely on costly inorganic materials, limiting their broader deployment.

View Article and Find Full Text PDF