98%
921
2 minutes
20
Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood-brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y444 + 733F) and a triple-mutant (Y444 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y-F + T-V) compared to AAV8 (double Y-F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y-F + T-V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149485 | PMC |
http://dx.doi.org/10.1038/s41434-020-00206-w | DOI Listing |
Orphanet J Rare Dis
August 2025
Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
Background: Lysosomal storage diseases (LSDs) is a large group of genetically heterogeneous inherited metabolic disorders that affect the functions of the lysosomes in various human tissues. Mucopolysaccharidosis type IIIA (MPSIIIA), Sanflippo syndrome A, is a rare autosomal recessive LSD caused by biallelic variants in the SGSH gene, codes for the lysosomal enzyme heparan-N-sulphatase. This study aimed to find out the SGSH mutational spectrum, clinical and biochemical characteristics in a cohort of MPS IIIA Egyptian patients.
View Article and Find Full Text PDFMol Genet Metab Rep
September 2025
Paediatric Gastroenterology and Digestive Endoscopy Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
Background: Mucolipidosis (ML) is a rare autosomal recessive lysosomal disorder with variable onset and severity: MLII, characterized by early onset and rapid progression, and MLIII, milder with late onset and prolonged survival. ML is due to mutations in the Golgi enzyme uridine diphosphate--acetylglucosamine-1-phosphotransferase, whose subunits are encoded by and genes. This report presents a particular case of infantile early-onset MLIII-gamma and emphasizes that articular manifestations can be a sign of a metabolic disease rather than a rheumatological or orthopedic one.
View Article and Find Full Text PDFThis study assessed the efficacy and safety of a biosimilar Laronidase (CinnaGen Company, Iran), compared to the reference Laronidase (Aldurazyme, BioMarin, USA) in maintaining urinary glycosaminoglycan (uGAG) levels in mucopolysaccharidosis type I (MPS I) patients. In this phase III, open-label, single-sequence, and cross-over study, MPS I patients received Aldurazyme for 12 weeks, followed by Laronidase (CinnaGen) for another 12 weeks. The primary outcome was the assessment of mean uGAG levels at the final visits of each medication administration.
View Article and Find Full Text PDFBrain Dev
August 2025
Division of Gene Therapy, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-5-28, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan. Electronic address:
Lysosomal storage diseases (LSDs) are metabolic disorders caused by the dysfunction of enzymes and other substances localized in lysosomes, known as intracellular organelles. There are many types of LSDs, with a wide range of clinical manifestations. LSDs are highly amenable to gene therapy due to various reasons, including the fact that they are essentially monogenic diseases and existence of cross-correction mechanisms.
View Article and Find Full Text PDFMol Syndromol
August 2025
Department of Neurosurgery, Program on Neurogenetics, Yale University School of Medicine, New Haven, CT, USA.
Introduction: Mucopolysaccharidosis type IIIB is an autosomal recessive lysosomal disorder caused by variants in the α-n-acetylglucosaminidase () gene. It is a progressive neurodegenerative disorder with no treatment. Previous enzyme therapies have been unsuccessful.
View Article and Find Full Text PDF