98%
921
2 minutes
20
Tailoring of the band gap in semiconductors is essential for the development of novel devices. In standard semiconductors, this modulation is generally achieved through highly energetic ion implantation. In two-dimensional (2D) materials, the photophysical properties are strongly sensitive to the surrounding dielectric environment presenting novel opportunities through van der Waals heterostructures encompassing atomically thin high-κ dielectrics. Here, we demonstrate a giant tuning of the exciton binding energy of the monolayer WSe as a function of the dielectric environment. Upon increasing the average dielectric constant from 2.4 to 15, the exciton binding energy is reduced by as much as 300 meV in ambient conditions. The experimentally determined exciton binding energies are in excellent agreement with the theoretical values predicted from a Mott-Wannier exciton model with parameters derived from first-principles calculations. Finally, we show how texturing of the dielectric environment can be used to realize potential-well arrays for excitons in 2D materials, which is a first step toward exciton metamaterials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c14696 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
Lead-free electroceramics have attracted significant research interest as alternatives to lead-containing systems due to concerns related to lead's toxicity to human health and the environment. Solid solutions based on bismuth sodium titanate (BNT) and barium titanate (BT), particularly those with compositions near the morphotropic phase boundary (MPB), such as 0.94 BiNaTiO-0.
View Article and Find Full Text PDFPLoS One
September 2025
Satellite Collections North, Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany.
Treatment of seeds with cold atmospheric pressure plasma (CAPP) is in its proof-of-concept phase with regard to its effect on germination and plant growth. To increase the germination of hardseeded red clover (Trifolium pratense L.), seeds are usually scarified, which is time-consuming and labour-intensive.
View Article and Find Full Text PDFAdv Mater
September 2025
Departmant of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, Modena 41121, Italy.
We combine experiments and simulations to investigate the degradation dynamics and dielectric breakdown (BD) of SiO/HfO gate stacks irradiated with varying doses of 40 MeV carbon ions. The analysis of postirradiation electrical characteristics (current-voltage, -, capacitance-voltage, -, and conductance-voltage, -) reveals that the HfO layer is the most affected by irradiation-induced damage, leading to the formation of defects consistent with oxygen vacancies. Postirradiation constant voltage stress (CVS) experiments reveal an inverse dependence of time to breakdown () and Weibull slopes (β) on the irradiation dose.
View Article and Find Full Text PDFLight Sci Appl
September 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02138, USA.
Entanglement is paramount in quantum information processing. Many quantum systems suffer from spatial decoherence in distances over a wavelength and cannot be sustained over short time periods due to dissipation. However, long range solutions are required for the development of quantum information processing on chip.
View Article and Find Full Text PDF