98%
921
2 minutes
20
Effective and sustained inhibition of non-enzymatic oncogenic driver proteins is a major pharmacological challenge. The clinical success of thalidomide analogues demonstrates the therapeutic efficacy of drug-induced degradation of transcription factors and other cancer targets, but a substantial subset of proteins are resistant to targeted degradation using existing approaches. Here we report an alternative mechanism of targeted protein degradation, in which a small molecule induces the highly specific, reversible polymerization of a target protein, followed by its sequestration into cellular foci and subsequent degradation. BI-3802 is a small molecule that binds to the Broad-complex, Tramtrack and Bric-à-brac (BTB) domain of the oncogenic transcription factor B cell lymphoma 6 (BCL6) and leads to the proteasomal degradation of BCL6. We use cryo-electron microscopy to reveal how the solvent-exposed moiety of a BCL6-binding molecule contributes to a composite ligand-protein surface that engages BCL6 homodimers to form a supramolecular structure. Drug-induced formation of BCL6 filaments facilitates ubiquitination by the SIAH1 E3 ubiquitin ligase. Our findings demonstrate that a small molecule such as BI-3802 can induce polymerization coupled to highly specific protein degradation, which in the case of BCL6 leads to increased pharmacological activity compared to the effects induced by other BCL6 inhibitors. These findings open new avenues for the development of therapeutic agents and synthetic biology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7816212 | PMC |
http://dx.doi.org/10.1038/s41586-020-2925-1 | DOI Listing |
J Mater Chem B
September 2025
Major in Bionano Engineering, School of Bio-Pharmaceutical Convergence, Hanyang University, Ansan, 155-88, Republic of Korea.
Membrane proteins are essential bio-macromolecules involved in numerous critical biological processes and serve as therapeutic targets for a wide range of modern pharmaceuticals. Small amphipathic molecules, called detergents or surfactants, are widely used for the isolation and structural characterization of these proteins. A key requirement for such studies is their ability to maintain membrane protein stability in aqueous solution, a task where conventional detergents often fall short.
View Article and Find Full Text PDFMacrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg. 207, 2800 Kongens Lyngby, Denmark.
A robust and computationally efficient methodology to compute Auger decay rates is presented that combines equation-of-motion coupled cluster singles and doubles two-particle Auger density matrices (also known as two-particle Dyson matrices) with precalculated bound-continuum integrals from atomic calculations, known as the one-center approximation. Illustrative applications include KLL Auger electron spectra (AES) of several small and medium-sized molecules.
View Article and Find Full Text PDFElectrophoresis
September 2025
School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing, China.
Electric droplet sorting is widely applied in the screening of target molecules, cells, drugs, and microparticles. Previous studies have made several optimizations on the electrode materials, structures, and arrangements. However, voltages of over 1 kV are required to realize droplet sorting, which causes the undesired droplet splitting.
View Article and Find Full Text PDFFuture Med Chem
September 2025
Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
Human mitochondrial ClpP (hClpP), a pivotal protease regulating mitochondrial protein homeostasis, has emerged as an important target for anticancer drug development. In recent years, significant progress has been made in designing small molecules targeting hClpP, primarily classified into activators and inhibitors. Activators specifically stimulate ClpP proteolytic activity by mimicking the mechanism of its chaperone protein ClpX, with representative compounds, such as imipridone derivatives (ONC201/206/212) and their optimized products (ZK53, 7k, etc.
View Article and Find Full Text PDF