98%
921
2 minutes
20
Interactions between U2AF homology motifs (UHMs) and U2AF ligand motifs (ULMs) play a crucial role in early spliceosome assembly in eukaryotic gene regulation. UHM-ULM interactions mediate heterodimerization of the constitutive splicing factors U2AF65 and U2AF35 and between other splicing factors that regulate spliceosome assembly at the 3' splice site, where UHM domains of alternative splicing factors, such as SPF45 and PUF60, contribute to alternative splicing regulation. Here, we performed high-throughput screening using fluorescence polarization assays with hit validation by NMR and identified phenothiazines as general inhibitors of UHM-ULM interactions. NMR studies show that these compounds occupy the tryptophan binding pocket of UHM domains. Co-crystal structures of the inhibitors with the PUF60 UHM domain and medicinal chemistry provide structure-activity-relationships and reveal functional groups important for binding. These inhibitors inhibit early spliceosome assembly on pre-mRNA substrates in vitro. Our data show that spliceosome assembly can be inhibited by targeting UHM-ULM interactions by small molecules, thus extending the toolkit of splicing modulators for structural and biochemical studies of the spliceosome and splicing regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648758 | PMC |
http://dx.doi.org/10.1038/s41467-020-19514-1 | DOI Listing |
bioRxiv
August 2025
University of California Santa Cruz, Molecular Cellular Developmental Biology, Santa Cruz, CA, 95064, USA.
The branch helix is a structure that forms when U2 snRNP engages with introns to initiate spliceosome assembly, and its formation is mutually exclusive with the branchpoint-interacting stem loop (BSL) present in U2 snRNA. While BSL structure impacts splicing with the constrained branchpoint sequence in yeast introns, its influence in the flexible context of human branchpoints is unknown. We employed an orthogonal U2 snRNA and splicing reporter to examine effects of perturbing BSL sequence.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
August 2025
Aptah Bio Inc., San Carlos, California, USA.
The U1 small nuclear ribonucleoprotein (snRNP) complex is crucial for pre-mRNA splicing and the regulation of gene expression. As a core component of the spliceosome, it is responsible for recognizing 5'-splice sites and initiating the splicing process. Each subunit of this complex performs specific functions in the assembly and stabilization of the spliceosomal machinery.
View Article and Find Full Text PDFbioRxiv
July 2025
Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Introduction: Congenital anomalies of the kidney and urinary tract (CAKUT) are the leading cause of chronic kidney disease in children and young adults. Although over 50 monogenic causes have been identified, many remain unresolved. PRPF8 is a core spliceosome component, essential for pre-mRNA splicing, and further localizes to the distal mother centriole to promote ciliogenesis.
View Article and Find Full Text PDFGenes Genomics
September 2025
Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
Liquid-liquid phase separation (LLPS) segregates the eukaryotic nucleus into membraneless ribonucleoprotein (RNP) condensates that orchestrate multiple stages of gene expression. In contrast to cytoplasmic granules, these nuclear assemblies lie in direct contact with chromatin and nascent pre‑mRNA, granting first‑order control over transcriptional initiation, co‑transcriptional RNA processing, and mRNA export. Consequently, alterations in their biochemical properties can propagate transcriptome‑wide disturbances and increase disease susceptibility.
View Article and Find Full Text PDFJ Mol Biol
August 2025
The Laboratory of Biochemistry and Genetics, The National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:
The regulation of gene expression requires many RNA-protein complexes, or ribonucleoproteins (RNPs). Understanding the molecular mechanisms guiding the assembly of RNPs is a crucial step towards characterizing their roles in the cell. Assembly of an RNP, like the ribosomal subunits or the spliceosome, often occurs on the fly as a major RNA component is synthesized and co-transcriptionally folded.
View Article and Find Full Text PDF