Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Both methane (CH) and acetylene (CH) are important energy source and raw chemicals in many industrial processes. The development of an energy-efficient and environmentally friendly separation and purification strategy for CH and CH is necessary. Ultramicroporous metal-organic framework (MOF) materials have shown great success in the separation and purification of small-molecule gases. Herein, the synergy effect of tritopic polytetrazolate and ditopic terephthalate ligands successfully generates a series of isoreticular ultramicroporous cadmium tetrazolate-carboxylate MOF materials (SNNU-13-16) with excellent CH and CH purification performance. Except for the uncoordinated tetrazolate N atoms serving as Lewis base sites, the pore size and pore surface of MOFs are systematically engineered by regulating dicarboxylic acid ligands varying from OH-BDC (SNNU-13) to Br-BDC (SNNU-14) to NH-BDC (SNNU-15) to 1,4-NDC (SNNU-16). Benefiting from the ultramicroporous character (3.8-5.9 Å), rich Lewis base N sites, and tunable pore environments, all of these ultramicroporous MOFs exhibit a prominent separation capacity for carbon dioxide (CO) or C2 hydrocarbons from CH and CH. Remarkably, SNNU-16 built by 1,4-NDC shows the highest ideal adsorbed solution theory CO/CH, ethylene (CH)/CH, and CH/CH separation selectivity values, which are higher than those of most famous MOFs with or without open metal sites. Dynamic breakthrough experiments show that SNNU-16 can also efficiently separate the CH/CO mixtures with a gas flow rate of 4 mL min under 1 bar and 298 K. The breakthrough time (18 min g) surpasses most best-gas-separation MOFs and nearly all other metal azolate-carboxylate MOF materials under the same conditions. The above prominently CH and CH purification abilities of SNNU-13-16 materials were further confirmed by the Grand Canonical Monte Carlo (GCMC) simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.0c02713 | DOI Listing |