98%
921
2 minutes
20
Anticipating the genetic and phenotypic changes induced by natural or artificial selection requires reliable estimates of trait evolvabilities (genetic variances and covariances). However, whether or not multivariate quantitative genetics models are able to predict precisely the evolution of traits of interest, especially fitness-related, life history traits, remains an open empirical question. Here, we assessed to what extent the response to bivariate artificial selection on both body size and maturity in the medaka , a model fish species, fits the theoretical predictions. Three lines (Large, Small, and Control lines) were differentially selected for body length at 75 days of age, conditional on maturity. As maturity and body size were phenotypically correlated, this selection procedure generated a bi-dimensional selection pattern on two life history traits. After removal of nonheritable trends and noise with a random effect ("animal") model, the observed selection response did not match the expected bidirectional response. For body size, Large and Control lines responded along selection gradients (larger body size and stasis, respectively), but, surprisingly, the Small did not evolve a smaller body length and remained identical to the Control line throughout the experiment. The magnitude of the empirical response was smaller than the theoretical prediction in both selected directions. For maturity, the response was opposite to the expectation (the Large line evolved late maturity compared to the Control line, while the Small line evolved early maturity, while the opposite pattern was predicted due to the strong positive genetic correlation between both traits). The mismatch between predicted and observed response was substantial and could not be explained by usual sources of uncertainties (including sampling effects, genetic drift, and error in matrix estimates).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7593195 | PMC |
http://dx.doi.org/10.1002/ece3.6783 | DOI Listing |
EMBO Rep
September 2025
Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK post, Bellary Road, Bangalore, Karnataka, 560065, India.
Immune cells are increasingly recognized as nutrient sensors; however, their developmental role in regulating growth under homeostasis or dietary stress remains elusive. Here, we show that Drosophila larval macrophages, in response to excessive dietary sugar (HSD), reprogram their metabolic state by activating glycolysis, thereby enhancing TCA-cycle flux, and increasing lipogenesis-while concurrently maintaining a lipolytic state. Although this immune-metabolic configuration correlates with growth retardation under HSD, our genetic analyses reveal that enhanced lipogenesis supports growth, whereas glycolysis and lipolysis are growth-inhibitory.
View Article and Find Full Text PDFJ Control Release
September 2025
Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:
Most chemotherapeutics distribute non-specifically throughout the body, resulting in off-target toxicities. Nanoparticle (NP) formulations provide a strategy to improve drug delivery by extending circulation time, protecting therapeutic agents from degradation, and enabling controlled release. However, delivering NPs effectively to solid tumors remains challenging due to the barriers within the tumor microenvironment.
View Article and Find Full Text PDFMaturitas
August 2025
Turku PET Centre, University of Turku and Åbo Akademi University, Finland; Turku University Hospital, Turku, Finland; Department of Psychology, University of Turku, Finland. Electronic address:
Objectives: Faces and bodies serve as important cues of physical attractiveness and reproductive fitness. Previous studies indicate that there are sex-related differences in the visual processing of erotic stimuli. We investigated gaze patterns and sex differences during sexual perception.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.
Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).
View Article and Find Full Text PDFChem Biodivers
September 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & Yunnan Key Laboratory of Basic Research and Innovative Application for Green Biological Production, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunm
Understanding the determinants of lifespan is a central objective in biology. Lifespan is shaped by dynamic, stage-specific changes in metabolism, energy allocation, and genome integrity. Heart rate serves as a physiological marker that reflects both life stage and metabolic state.
View Article and Find Full Text PDF