98%
921
2 minutes
20
Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy comprised of various cytogenetic and molecular abnormalities that has notoriously been difficult to treat with an overall poor prognosis. For decades, treatment options were limited to either intensive chemotherapy with anthracycline and cytarabine-based regimens (7 + 3) or lower intensity regimens including hypomethylating agents or low dose cytarabine, followed by either allogeneic stem cell transplant or consolidation chemotherapy. Fortunately, with the influx of rapidly evolving molecular technologies and new genetic understanding, the treatment landscape for AML has dramatically changed. Advances in the formulation and delivery of 7 + 3 with liposomal cytarabine and daunorubicin (Vyxeos) have improved overall survival in secondary AML. Increased understanding of the genetic underpinnings of AML has led to targeting actionable mutations such as , and , and BCL2 or hedgehog pathways in more frail populations. Antibody drug conjugates have resurfaced in the AML landscape and there have been numerous advances utilizing immunotherapies including immune checkpoint inhibitors, antibody-drug conjugates, bispecific T cell engager antibodies, chimeric antigen receptor (CAR)-T therapy and the development of AML vaccines. While there are dozens of ongoing studies and new drugs in the pipeline, this paper serves as a review of the advances achieved in the treatment of AML in the last several years and the most promising future avenues of advancement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7692236 | PMC |
http://dx.doi.org/10.3390/cancers12113225 | DOI Listing |
J Clin Invest
September 2025
The University of Texas at Austin, Austin, United States of America.
Background: Following SARS-CoV-2 infection, ~10-35% of COVID-19 patients experience long COVID (LC), in which debilitating symptoms persist for at least three months. Elucidating biologic underpinnings of LC could identify therapeutic opportunities.
Methods: We utilized machine learning methods on biologic analytes provided over 12-months after hospital discharge from >500 COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor", trained on patient-reported physical function survey scores.
Background: Nucleophosmin 1 (NPM1) mutations represent one of the most frequent genetic alterations in acute myeloid leukemia (AML). However, the prognostic significance of concurrent molecular abnormalities and clinical features in NPM1-mutated AML remains to be fully elucidated.
Methods: We retrospectively analyzed 73 adult AML patients with NPM1 mutations.
Background: This study aimed to identify the diagnostic and prognostic ability of serum miR-411-3p in patients with acute myeloid leukemia (AML).
Methods: Blood samples were collected from 60 AML patients and 60 healthy controls to measure serum miR-411-3p and thereafter discuss its potential clinical value.
Results: Serum miR-411-3p was decreased in AML patients and was even lower in those with M4/M5 subtypes or high white blood cell count or adverse cytogenetic risk.
Background: Angioimmunoblastic T-cell lymphoma (AITL) is a rare and aggressive form of peripheral T-cell lymphoma, accounting for 1 - 2% of non-Hodgkin lymphomas. Diagnosis is challenging, and there is no established standard first-line treatment. This case report highlights a rare progression from AITL to therapy-related acute myeloid leukemia (AML-pCT) following cytotoxic chemotherapy.
View Article and Find Full Text PDFBackground: This study aims to gain further insights into the characteristics of the rare subtype of acute myeloid leukemia (AML) with BCR∷ABL by analyzing laboratory detection results of various gene mutations, such as NPM1.
Methods: Laboratory detection results of multiple gene missense mutations, including NPM1, were analyzed in a case of primary AML with BCR∷ABL.
Results: The patient exhibited morphological features of acute leukemia in the bone marrow.