A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Leveraging functional annotation to identify genes associated with complex diseases. | LitMetric

Leveraging functional annotation to identify genes associated with complex diseases.

PLoS Comput Biol

Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States of America.

Published: November 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To increase statistical power to identify genes associated with complex traits, a number of transcriptome-wide association study (TWAS) methods have been proposed using gene expression as a mediating trait linking genetic variations and diseases. These methods first predict expression levels based on inferred expression quantitative trait loci (eQTLs) and then identify expression-mediated genetic effects on diseases by associating phenotypes with predicted expression levels. The success of these methods critically depends on the identification of eQTLs, which may not be functional in the corresponding tissue, due to linkage disequilibrium (LD) and the correlation of gene expression between tissues. Here, we introduce a new method called T-GEN (Transcriptome-mediated identification of disease-associated Genes with Epigenetic aNnotation) to identify disease-associated genes leveraging epigenetic information. Through prioritizing SNPs with tissue-specific epigenetic annotation, T-GEN can better identify SNPs that are both statistically predictive and biologically functional. We found that a significantly higher percentage (an increase of 18.7% to 47.2%) of eQTLs identified by T-GEN are inferred to be functional by ChromHMM and more are deleterious based on their Combined Annotation Dependent Depletion (CADD) scores. Applying T-GEN to 207 complex traits, we were able to identify more trait-associated genes (ranging from 7.7% to 102%) than those from existing methods. Among the identified genes associated with these traits, T-GEN can better identify genes with high (>0.99) pLI scores compared to other methods. When T-GEN was applied to late-onset Alzheimer's disease, we identified 96 genes located at 15 loci, including two novel loci not implicated in previous GWAS. We further replicated 50 genes in an independent GWAS, including one of the two novel loci.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660930PMC
http://dx.doi.org/10.1371/journal.pcbi.1008315DOI Listing

Publication Analysis

Top Keywords

identify genes
12
genes associated
12
genes
9
annotation identify
8
associated complex
8
complex traits
8
gene expression
8
expression levels
8
disease-associated genes
8
epigenetic annotation
8

Similar Publications