Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The by-product generated after ergosterol extraction from mushrooms (A. bisporus) is rich in polysaccharides (β-glucans) and proteins. The usefulness of this mushroom's by-product (MC) in oil microencapsulation by spray drying was evaluated partially replacing maltodextrin (13.5% w/w dry matter) and totally substituting Tween®20 with MC. Ergosterol was investigated as antioxidant. Non-Newtonian stable emulsions with mono-modal droplet size distributions were obtained with MC. Oil encapsulation efficiency was high (≥89%) and oil within microcapsules containing MC exhibited higher (p < 0.05) oxidative stability during spray drying. Powders containing MC exhibited larger particles (d27% larger), 12% lower solubility in water and perceptible color changes. During storage (35 °C 50% RH), conjugated dienes increased more slowly in microcapsules containing MC. Reductions up to 28% in linoleic acid were observed after 150 days. Ergosterol was 95% degraded after 150 days in powders with MC and totally degraded after 2 days in powders without MC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.128429 | DOI Listing |