Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Total sleep deprivation (TSD) negatively affects cognitive function. Previous research has focused on individual variation in cognitive function following TSD, but we know less about how TSD influences the lateralization of spatial working memory. This study used event-related-potential techniques to explore asymmetry in spatial-working-memory impairment. Fourteen healthy male participants performed a two-back task with electroencephalogram (EEG) recordings conducted at baseline and after 36 h of TSD. We selected 12 EEG points corresponding to left and right sides of the brain and then observed changes in N2 and P3 components related to spatial working memory. Before TSD, P3 amplitude differed significantly between the left and right sides of the brain. This difference disappeared after TSD. Compared with baseline, P3 amplitude decreased for a duration as extended as the prolonged latency of N2 components. After 36 h of TSD, P3 amplitude decreased more in the right hemisphere than the left. We therefore conclude that TSD negatively affected spatial working memory, possibly through removing the right hemisphere advantage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573126PMC
http://dx.doi.org/10.3389/fnins.2020.562035DOI Listing

Publication Analysis

Top Keywords

spatial working
16
working memory
16
total sleep
8
sleep deprivation
8
lateralization spatial
8
tsd
8
tsd negatively
8
cognitive function
8
left sides
8
sides brain
8

Similar Publications

Quantum-Size Effect Induced Andreev Bound States in Ultrathin Metallic Islands Proximitized by a Superconductor.

Phys Rev Lett

August 2025

Shanghai Jiao Tong University, Tsung-Dao Lee Institute, Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai 200240, China.

While Andreev bound states (ABSs) have been realized in engineered superconducting junctions, their direct observation in normal metal-superconductor heterostructures-enabled by quantum confinement-remains experimentally elusive. Here, we report the detection of ABSs in ultrathin metallic islands (Bi, Ag, and SnTe) grown on the s-wave superconductor NbN. Using high-resolution scanning tunneling microscopy and spectroscopy, we clearly reveal in-gap ABSs with energies symmetric about the Fermi level.

View Article and Find Full Text PDF

Objectives: To describe the research principles and cohort characteristics of the multi-disciplinary Project HERCULES, an innovative model of safe high-volume outpatient eye-care service for patients with stable chronic eye diseases. Results and analyses of the workstreams within Project HERCULES will be reported elsewhere. The rationale was to improve eye-care capacity in the National Health Service (NHS) in England through the creation of technician-delivered monitoring in a large retail-unit in a London shopping-centre, with remote asynchronous review of results by clinicians (named Eye-Testing and Review through Asynchronous Clinic (Eye-TRAC)).

View Article and Find Full Text PDF

The tumor microenvironment is a dynamic eco system where cellular interactions drive cancer progression. However, inferring cell-cell communication from non-spatial scRNA-seq data remains challenging due to incomplete li gand-receptor databases and noisy cell type annotations. H ere, we propose scGraphDap, a graph neural network frame work that integrates functional state pseudo-labels and graph structure learning to improve both cell type annotation an d CCC inference.

View Article and Find Full Text PDF

Alpha oscillations have been implicated in the maintenance of working memory representations. Notably, when memorised content is spatially lateralised, the power of posterior alpha activity exhibits corresponding lateralisation during the retention interval, consistent with the retinotopic organisation of the visual cortex. Beyond power, alpha frequency has also been linked to memory performan ce, with faster alpha rhythms associated with enhanced retention.

View Article and Find Full Text PDF

Nano-laminography with a transmission X-ray microscope.

J Synchrotron Radiat

November 2025

Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA.

Nano-laminography combines the penetrating power of hard X-rays with a tilted rotational geometry to deliver high-resolution, three-dimensional images of laterally extended, flat specimens that are otherwise incompatible with, or difficult to image using, conventional nano-tomography. In this work, we demonstrate a full-field, X-ray nano-laminography system implemented with the transmission X-ray microscope at beamline 32-ID of the upgraded Advanced Photon Source at Argonne National Laboratory, USA. By rotating the sample around an axis inclined by 20° to the incident beam, the technique minimizes the long optical path lengths that would otherwise generate excessive artifacts when planar samples are imaged edge-on.

View Article and Find Full Text PDF