A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Evaluating the carbon footprint of a Spanish city through environmentally extended input output analysis and comparison with life cycle assessment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, most of the greenhouse gas (GHG) emissions are attributed to cities, as they are the global centers of business, residential and cultural activity, cities are expected to play a leading role in proposing climate change mitigation actions. To do so, it is important to have tools that allow the carbon footprint of cities to be assessed as accurately as possible. This study aims to quantify the carbon footprint (CF) associated with the activities developed in a Spanish city (Cadiz, Southwest Spain) by means of two available environmental methodologies, namely Environmentally Extended Input-Output Analysis (EEIOA) and Life Cycle assessment (LCA). When EEIOA is considered, two downscaling factors were proposed for the analysis due to the nature of the data handled (monetary data), based on the incomes (DF) and expenditures (DF) per inhabitant at city level. Regarding LCA, the rates of consumption of goods and production of waste per inhabitant have been processed to estimate the CF. The CF scores identified were 5.25 and 3.83 tCO-eq·inhabitant·year for DF and DF respectively, according to EEIOA, and 5.43 tCO-eq·inhabitant·year, considering LCA. Therefore, a similarity can be concluded between the results obtained with both methodologies despite the inherent differences. Considering the results, the downscaling procedure based on income per inhabitant should be preferred, pointing to EEIOA as a good alternative to LCA for evaluating the CF at city level, requiring less time and effort. In contrast, EEIOA reports more limitations when critical flows were identified, which LCA can solve. Finally, this study can be of great interest to policy makers and city governments to know the CF and the main flows that contribute and in this way, can develop new policies and city models for reducing GHG emission new policies and city models for reducing GHG emission and addressing climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.143133DOI Listing

Publication Analysis

Top Keywords

carbon footprint
12
spanish city
8
environmentally extended
8
life cycle
8
cycle assessment
8
climate change
8
city level
8
policies city
8
city models
8
models reducing
8

Similar Publications