98%
921
2 minutes
20
The reflected back focal plane from a microscope objective is known to provide excellent information of material properties and can be used to analyze the generation of surface plasmons and surface waves in a localized region. Most analysis has concentrated on direct measurement of the reflected intensity in the back focal plane. By accessing the phase information, we show that examination in the back focal plane becomes considerably more powerful allowing the reconstructed field to be filtered, propagated and analyzed in different domains. Moreover, the phase often gives a superior measurement that is far easier to use in the assessment of the sample, an example of such cases is examined in the present paper. We discuss how the modified defocus phase retrieval algorithm has the potential for real time measurements with parallel image acquisition since only three images are needed for reliable retrieval of arbitrary distributions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.404573 | DOI Listing |
Nanoscale
September 2025
St. Petersburg State University, 199034 St. Petersburg, Russia.
Using angle-resolved photoemission spectroscopy (ARPES) with spin resolution, scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) methods, we study the electronic structure of graphene-covered and bare Au/Co(0001) systems and reveal intriguing features, arising from the ferrimagnetic order in graphene and the underlying gold monolayer. In particular, a spin-polarized Dirac-cone-like state, intrinsically related to the induced magnetization of Au, was discovered at point. We have obtained a good agreement between experiment and theory for bare and graphene-covered Au/Co(0001) and have proven that both Au ferrimagnetism and the Dirac-cone-like band are intimately linked to the triangular loop dislocations present at the Au/Co interface.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Laboratory of Inorganic Synthesis and Catalysis (LSCI), Institute of Chemical Sciences and Engineering, École Polytechnique Fédéralede Lausanne (EPFL), Lausanne 1015, Switzerland.
The challenge to produce multicarbon (C) products in high current densities in the electrochemical reduction of carbon dioxide (CORR) has motivated intense research. However, the ability of solvated cations to tune and activate water for C production in the CORR has been overlooked. In this study, we report the incorporation of a covalently grown layer of functionalized phenyl groups on the Cu surface that leads to a 7-fold increase in ethylene production (to -530 mA cm) and a 6-fold increase in C products (to -760 mA cm).
View Article and Find Full Text PDFPediatr Blood Cancer
September 2025
Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK.
Background: Local control strategies in pediatric oncology are guided by disease-specific considerations. Effective communication of the goals of surgical procedure and associated intraoperative events plays a crucial role in shaping subsequent treatment decisions. However, accurately and comprehensively documenting these findings remains challenging, with considerable variability across different tumor types.
View Article and Find Full Text PDFMol Neurobiol
September 2025
Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning Province, 116001, People's Republic of China.
Spinal cord injury (SCI) is a severe traumatic disorder of the central nervous system, often resulting in partial or complete loss of sensory and motor functions. Ferroptosis, a lipid peroxidation-driven apoptotic process triggered by iron overload, has emerged as a novel form of programmed cell death and a focal point in post-SCI cell death research. Exosomes (Exo), as delivery vehicles, exhibit multiple advantages, including superior encapsulation capacity, high targeting efficiency, and enhanced blood-brain barrier penetration to reach the central nervous system.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Electronic address:
Cabbage (Brassica oleracea var. capitata) is an important vegetable crop that is widely cultivated throughout the world. Plant height is a key agronomic trait in cabbage, influencing architecture and yield, and is mainly determined by cell division and stem expansion.
View Article and Find Full Text PDF