98%
921
2 minutes
20
This review aims to showcase the current use of graphene derivatives, graphene-based nanomaterials in particular, in biopolymer-based composites for food packaging applications. A brief introduction regarding the valuable attributes of available and emergent bioplastic materials is made so that their contributions to the packaging field can be understood. Furthermore, their drawbacks are also disclosed to highlight the benefits that graphene derivatives can bring to bio-based formulations, from physicochemical to mechanical, barrier, and functional properties as antioxidant activity or electrical conductivity. The reported improvements in biopolymer-based composites carried out by graphene derivatives in the last three years are discussed, pointing to their potential for innovative food packaging applications such as electrically conductive food packaging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589102 | PMC |
http://dx.doi.org/10.3390/nano10102077 | DOI Listing |
J Chem Phys
September 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.
View Article and Find Full Text PDFChem Rec
September 2025
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.
The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Bioengineering, Yildiz Technical University, Istanbul, 34722, Turkey.
Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.
View Article and Find Full Text PDFACS Omega
September 2025
Institute of Physics, University of Brasília, Brasília, Federal District 70910-900, Brazil.
The exploration of three-dimensional (3D) carbon allotropes has received increasing attention due to their potential in advanced materials and nanotechnology. Irida-Graphene (IG), a two-dimensional carbon allotrope with a structure consisting of 3-6-8 carbon rings, can be used as a precursor for creating 3D materials with tailored properties. This work presents a comprehensive computational characterization of four novel 3D structures derived from IG, named 3D-IG-α, -β, -γ, and -δ.
View Article and Find Full Text PDFChem Res Toxicol
September 2025
Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina 45110, Greece.
Graphene-based nanomaterials have transformed biomedical applications due to their exceptional physicochemical properties, and nitrogen (N)-doping further enhances the electrocatalytic activity of graphene. Driven by the demand for safer and more sustainable nanomaterials, in this work, we compared eco-friendly produced - doped graphene (bD) with conventionally synthesized - doped graphene (cD) in three different cell lines. Across all cell types and assays, cD was more toxic than bD.
View Article and Find Full Text PDF