98%
921
2 minutes
20
Coronaviruses are able to establish persistence. However, how coronaviruses react to persistence and whether the selected viruses have altered their characteristics remain unclear. In this study, we found that the persistent infection of bovine coronavirus (BCoV), which is in the same genus as SARS-COV-2, led to alterations of genome structure, attenuation of gene expression, and the synthesis of subgenomic mRNA (sgmRNA) with a previously unidentified pattern. Subsequent analyses revealed that the altered genome structures were associated with the attenuation of gene expression. In addition, the genome structure at the 5' terminus and the cellular environment during the persistence were responsible for the sgmRNA synthesis, solving the previously unanswered question regarding the selection of transcription regulatory sequence for synthesis of BCoV sgmRNA 12.7. Although the BCoV variants (BCoV-p95) selected under the persistence replicated efficiently in cells without persistent infection, its pathogenicity was still lower than that of wild-type (wt) BCoV. Furthermore, in comparison with wt BCoV, the variant BCoV-p95 was not able to efficiently adapt to the challenges of alternative environments, suggesting wt BCoV is genetically robust. We anticipate that the findings derived from this fundamental research can contribute to the disease control and treatments against coronavirus infection including SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589090 | PMC |
http://dx.doi.org/10.3390/cells9102322 | DOI Listing |
Lab Anim Res
September 2025
Korea Model Animal Priority Center (KMPC), Seoul, Republic of Korea.
Background: Laboratory animal veterinarians play a crucial role as a bridge between the ethical use of laboratory animals and the advancement of scientific and medical knowledge in biomedical research. They alleviate pain and reduce distress through veterinary care of laboratory animals. Additionally, they enhance animal welfare by creating environments that mimic natural habitats through environmental enrichment and social associations.
View Article and Find Full Text PDFGenome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFEMBO J
September 2025
Department of Biology, University of Crete, Vassilika Vouton, Heraklion, 70013, Greece.
In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.
View Article and Find Full Text PDFNat Genet
September 2025
Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
Despite advances in genomic diagnostics, the majority of individuals with rare diseases remain without a confirmed genetic diagnosis. The rapid emergence of advanced omics technologies, such as long-read genome sequencing, optical genome mapping and multiomic profiling, has improved diagnostic yield but also substantially increased analytical and interpretational complexity. Addressing this complexity requires systematic multidisciplinary collaboration, as recently demonstrated by targeted diagnostic workshops.
View Article and Find Full Text PDFEye (Lond)
September 2025
Genetics Laboratory, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
Background: Inherited retinal dystrophies (IRDs) are a genetically heterogeneous group of conditions, with approximately 40% of cases remaining unresolved after initial genetic testing. This study aimed to assess the impact of a personalised genomic approach integrating whole-exome sequencing (WES) reanalysis, whole-genome sequencing (WGS), customised gene panels and functional assays to improve diagnostic yield in unresolved cases.
Subjects/methods: We retrospectively reviewed a cohort of 597 individuals with IRDs, including 525 probands and 72 affected relatives.