Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nowadays, evergreen sclerophyllous and winter-deciduous malacophyllous oaks with different paleogeographical origins coexist under Mediterranean-type climates, such as the mixed forests of the evergreen Quercus ilex subsp. rotundifolia Lam. and the winter-deciduous Quercus faginea Lam. Both Mediterranean oaks constitute two examples of contrasting leaf habit, so it could be expected that they would have different functional strategies to cope with summer drought. In this study, we analysed photosynthetic, photochemical and hydraulic traits of different organs for Q. faginea and Q. ilex subsp. rotundifolia under well-watered conditions and subjected to very severe drought. The coordinated response between photosynthetic and hydraulic traits explained the higher photosynthetic capacity of Q. faginea under well-watered conditions, which compensated its shorter leaf life span at the expense of higher water consumption. The progressive imposition of water stress evidenced that both types of Mediterranean oaks displayed different functional strategies to cope with water limitations. Specifically, the decrease in mesophyll conductance associated with edaphic drought seems to be the main factor explaining the differences found in the dynamics of net CO2 assimilation throughout the drought period. The sharp decline in photosynthetic traits of Q. faginea was coupled with a strong decrease in shoot hydraulic conductance in response to drought. This fact probably avoided extensive xylem embolism in the stems (i.e., 'vulnerability segmentation'), which enabled new leaf development after drought period in Q. faginea. By contrast, leaves of Q. ilex subsp. rotundifolia showed effective photoprotective mechanisms and high resistance to drought-induced cavitation, which would be related with the longer leaf life span of the evergreen Mediterranean oaks. The co-occurrence of both types of Mediterranean oaks could be related to edaphic conditions that ensure the maintenance of soil water potential above critical values for Q. faginea, which can be severely affected by soil degradation and climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpaa135DOI Listing

Publication Analysis

Top Keywords

mediterranean oaks
20
ilex subsp
16
subsp rotundifolia
16
functional strategies
12
severe drought
8
leaf habit
8
quercus faginea
8
quercus ilex
8
strategies cope
8
hydraulic traits
8

Similar Publications

This study investigates the responses of four Mediterranean tree species, Quercus ilex, Viburnum tinus, Acer campestre, and Fraxinus ornus, to urban-relevant abiotic stressors such as soil compaction, water deficit, and over-optimal temperature, applied singly and in combination under controlled experimental conditions. A total of 23 functional leaf traits spanning photosynthesis, water regulation, structural support, and leaf stoichiometry functions were measured. Species identity was the main driver of trait variability.

View Article and Find Full Text PDF

Knowledge of the intraspecific variability of volatiles produced by plants is central for estimating their fluxes from ecosystems and for understanding their evolution in an ecological and phylogenetic context. Past studies suggested that volatile emissions from Cork oak ( L.) exhibit a high degree of qualitative and quantitative polymorphism.

View Article and Find Full Text PDF

No legacy effects of severe drought on carbon and water fluxes in a Mediterranean oak forest.

Plant Biol (Stuttg)

August 2025

Research Group Modeling of Biogeochemical Systems, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany.

Severe droughts affect vegetation through several processes, such as hydraulic failure, early leaf senescence, depletion of carbon reserves, and reduced growth. These, in turn, can delay drought recovery and influence ecosystem functioning beyond the drought duration. The goal of this study is to investigate the direct response and physiological recovery of a Mediterranean oak (Quercus ilex L.

View Article and Find Full Text PDF

This study evaluates how different management systems influence soil organic carbon (SOC) sequestration in a Mediterranean ecosystem of the Iberian Peninsula. SOC was quantified in 108 samples from wooded shrubland (WS) and shrubland without trees (S), featuring species such as , , , and . SOC levels were significantly highest in WS (67.

View Article and Find Full Text PDF

This study investigates the composition, abundance, and seasonal variability of airborne pollen in Siirt, a transitional region between the Irano-Turanian and Mediterranean phytogeographical zones in southeastern Türkiye. The main objective was to assess pollen diversity and its relationship with meteorological parameters over a two-year period (2022-2023). Airborne pollen was collected using a Hirst-type volumetric pollen and spore trap; a total of 18,666 pollen grains/m belonging to 37 taxa were identified.

View Article and Find Full Text PDF