Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermodynamic uncertainty relations (TURs) set fundamental bounds on the fluctuation and dissipation of stochastic systems. Here, we examine these bounds, in experiment and theory, by exploring the entire phase space of a cyclic information engine operating in a nonequilibrium steady state. Close to its maximal efficiency, we find that the engine violates the original TUR. This experimental demonstration of TUR violation agrees with recently proposed softer bounds: The engine satisfies two generalized TUR bounds derived from the detailed fluctuation theorem with feedback control and another bound linking fluctuation and dissipation to mutual information and Renyi divergence. We examine how the interplay of work fluctuation and dissipation shapes the information conversion efficiency of the engine, and find that dissipation is minimal at a finite noise level, where the original TUR is violated.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.032126DOI Listing

Publication Analysis

Top Keywords

fluctuation dissipation
12
thermodynamic uncertainty
8
original tur
8
bounds
5
reaching violating
4
violating thermodynamic
4
uncertainty bounds
4
bounds engines
4
engines thermodynamic
4
uncertainty relations
4

Similar Publications

Dynamic Coupling and Disorder in Aggregation of Light-Harvesting Complex II in Plant Thylakoid Membranes.

J Phys Chem B

September 2025

Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan 342037, India.

The dynamics of the aggregated light-harvesting complex (LHCII) associated with its antenna pigments can be crucial for a transition between light-harvesting and dissipative states, which is pivotal for nonphotochemical quenching (NPQ). To this end, aggregation of pigment-binding LHCII monomers and PsbS-associated trimers in neutral and low lumenal pH respectively, has been investigated when embedded in the plant thylakoid membranes, using coarse-grained molecular dynamics simulations. Both pigment-binding LHCII monomers and PsbS-associated trimers dynamically form and break dimers and higher-order aggregates in thylakoids within the simulation time.

View Article and Find Full Text PDF

We report the observation of negative differential resistance (NDR) in single-atom single-electron devices based on arsenic, phosphorus and potassium dopants implanted in a silicon host matrix. All devices exhibit NDR, with the potassium-based one exhibiting NDR at room temperature because of the larger charging and confinement energies. Our experimental results are reproduced with a simple model that assumes sequential electron tunnelling through two series-connected charge centres, each having two discrete energy levels.

View Article and Find Full Text PDF

Active-matter systems are inherently out-of-equilibrium and perform mechanical work by utilizing their internal energy sources. Breakdown of time-reversal symmetry (BTRS) is a hallmark of such dissipative nonequilibrium dynamics. We introduce a robust, experimentally accessible, noninvasive, quantitative measure of BTRS in terms of the Kullback-Leibler divergence in collision events, demonstrated in our novel artificial active matter, comprised of battery-powered spherical rolling robots whose energetics in different modes of motion can be measured with high precision.

View Article and Find Full Text PDF

Brownian motion with stochastic energy renewals.

Chaos

September 2025

Institut für Theoretische Physik II - Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.

We investigate the impact of intermittent energy injections on a Brownian particle, modeled as stochastic renewals of its kinetic energy to a fixed value. Between renewals, the particle follows standard underdamped Langevin dynamics. For energy renewals occurring at a constant rate, we find non-Boltzmannian energy distributions that undergo a shape transition driven by the competition between the velocity relaxation timescale and the renewal timescale.

View Article and Find Full Text PDF

A thermodynamic perspective on mammalian neural crest ingression.

Proc Natl Acad Sci U S A

September 2025

Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.

The ingression of neural crest cells from an ectodermal to a mesodermal layer is regulated by instructive, directional cues and potentially stochastic, biophysical parameters such as differential cell adhesion and tension heterogeneity. However, a cohesive framework in which to consider how various influences contribute to ingression remains elusive. Here, we observe the cell behaviors of the murine neural crest in three dimensions over time and apply a free energy framework to more wholly understand why cells ingress.

View Article and Find Full Text PDF