Literature-Based Phenotype Survey and In Silico Genotype Investigation of Antibiotic Resistance in the Genus Bifidobacterium.

Curr Microbiol

Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, 425199, Hunan, China.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bifidobacteria are typical commensals inhabiting the human intestine and are beneficial to the host because of their probiotic properties. One of the risks concerning probiotics is the potential of introducing antibiotic resistance genes (ARGs) to the host gut pathogens. This study was aimed to depict the general antibiotic resistance characteristics of the genus Bifidobacterium by combining the reported phenotype dataset and in silico genotype prediction. Bifidobacteria were mostly reported to be sensitive to beta-lactams, glycopeptides, chloramphenicol, and rifampicin, but resistant to aminoglycosides, polypeptides, quinolones, and mupirocin. Generally, the resistance phenotypes to erythromycin, tetracycline, fusidic acid, metronidazole, clindamycin, and trimethoprim were variable. Besides cmX and tetQ, characterized in bifidobacterial resident plasmids, 3520 putative ARGs were identified from 831 bifidobacterial genomes through BLASTP search. The identified ARGs matched thirty-eight reference ARGs, four of which seemed to be mutant housekeeping genes. The two high-abundant ARGs, tetW and ermX, were found to have different distribution traits. The predicted ARGs reasonably explained most of the corresponding resistant phenotypes in the published literature.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-020-02230-wDOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
12
silico genotype
8
genus bifidobacterium
8
args
6
literature-based phenotype
4
phenotype survey
4
survey silico
4
genotype investigation
4
investigation antibiotic
4
resistance
4

Similar Publications

Objectives: Acute pyelonephritis (APN) is a common diagnosis among patients presenting to the Emergency Department (ED). It is treated by empiric antibiotics within the ED. With a rise in antimicrobial resistance globally, it is unknown whether patients are being managed with empiric antibiotics that are appropriate for the causative organisms of APN.

View Article and Find Full Text PDF

Cefepime (FEP), a fourth-generation cephalosporin combined with tazobactam (TAZ), a β-lactamase inhibitor, is being developed by Wockhardt as a pharmacodynamically optimized fixed dose combination (FEP-2 g + TAZ-2 g) for the treatment of multidrug-resistant Gram-negative infections. To undertake an exposure-response analysis for establishing pharmacokinetic (PK)/pharmacodynamic (PD) targets, it is crucial to characterize the PK profile of compounds in surrogate compartments, such as plasma and lung, in clinically relevant animal infection models used to evaluate efficacy. In the current study, PKs of FEP and TAZ were assessed in plasma and in epithelial lining fluid (ELF) of neutropenic noninfected, lung-infected, and thigh-infected mice.

View Article and Find Full Text PDF

Patients with traumatic injuries who develop ventilator-associated pneumonia (VAP) incur a higher risk of developing multi-drug resistance. Shorter duration of antibiotic agents for early VAP at five days may reduce antibiotic agent exposure without worsening patient outcomes. This retrospective cohort study performed at a Level I Trauma Center included adult (≥16 years old) patients with trauma diagnosed with bronchoalveolar lavage (BAL)-proven early (within four days of intubation) bacterial VAP.

View Article and Find Full Text PDF

Background: Innovative antibiotic discovery strategies are urgently needed to successfully combat infections caused by multi-drug-resistant bacteria.

Methods: We employed a direct screening approach to identify compounds with antimicrobial and antimicrobial helper-drug activity against Gram-positive and Gram-negative bacteria. We used this platform in two different strains of methicillin-resistant (MRSA) and aminoglycoside-resistant strains of to screen for antimicrobials compounds, which potentiate the activity of aminoglycoside antibiotics.

View Article and Find Full Text PDF

Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.

View Article and Find Full Text PDF