Evaluation of a new chromogenic agar for the detection of environmental Enterococcus.

J Microbiol Methods

Bacterial Epidemiology and Antimicrobial Resistance Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, GA 30605, USA. Electronic address:

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

CHROMagar Enterococcus (CHR), a new chromogenic medium not yet available for commercial purchase, was evaluated for the isolation of Enterococcus from environmental water samples. Its performance was evaluated in comparison to commercially available media, Enterococcosel agar and m-Enterococcus agar. Three consecutive tests were conducted with each test being performed with a newer batch of the CHR medium with improved media composition per batch. The recovery rate, positive predictive value, and sensitivity of the CHR medium improved with the subsequent re-formulation of the media components from 93.9%, 63%, and 92.6%, respectively, with the first batch of CHR, to 96.2%, 97.4%, and 95.7%, respectively, with the newest batch of CHR. The results showed that the newer batches of CHR performed better than the previous versions and are comparable to the other two commercial media tested. The CHR medium has been developed to decrease the turnaround time to approximately 18 h and be read more easily due to bigger colony morphology. The superior growth of colonies on CHR compared with other media in a shorter period of time can aid in the early detection of enterococci and may offer a user-friendly alternative to other media for the isolation of enterococci.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mimet.2020.106082DOI Listing

Publication Analysis

Top Keywords

batch chr
12
chr medium
12
chr
8
medium improved
8
media
6
evaluation chromogenic
4
chromogenic agar
4
agar detection
4
detection environmental
4
environmental enterococcus
4

Similar Publications

Adaptive laboratory evolution (ALE) is a widely used microbial strain development and optimization method. ALE experiments, to select for faster-growing strains, are commonly performed as serial batch cultivations in shake flasks, serum bottles, or microtiter plates or as continuous cultivations in bioreactors on a laboratory scale. To combine the advantages of higher throughput in parallel shaken cultures with continuous fermentations for conducting ALE experiments, a new Continuous parallel shaken pH-auxostat (CPA) was developed.

View Article and Find Full Text PDF

Background: The pooled sample method is used in epigenomic research and expression analysis and is a cost-effective screening approach for small amounts of DNA. Evaluation of the pooled sample method in epigenomic studies is performed using the Illumina Infinium Methylation 450K BeadChip array; however, subsequent reports on the updated 850K array are lacking. A previous study demonstrated that the methylation levels obtained from individual samples were accurately replicated using pooled samples but did not address epigenome-wide association study (EWAS) statistics.

View Article and Find Full Text PDF

Introduction: DNA methylation (DNAme) has been cross-sectionally associated with type 2 diabetes and hemoglobin A1c (HbA1c) in the general population. However, longitudinal data and data in type 1 diabetes are currently very limited. Thus, we performed an epigenome-wide association study (EWAS) in an observational type 1 diabetes cohort to identify loci with DNAme associated with concurrent and future HbA1cs, as well as other clinical risk factors, over 28 years.

View Article and Find Full Text PDF

Although bifidobacteria are widely used as probiotics, their metabolism and physiology remain to be explored in depth. In this work, strain-specific genome-scale metabolic models were developed for two industrially and clinically relevant bifidobacteria, Bifidobacterium animalis subsp. lactis BB-12 and B.

View Article and Find Full Text PDF

Yeast spoilage of fermented dairy products causes challenges for the dairy industry, including economic losses due to wasted product. Food cultures with bioprotective effects are becoming more widely used to help ensure product quality throughout product shelf life. To assist the dairy industry when evaluating product quality throughout shelf life and the effect of bioprotective cultures, we aimed to build stochastic models that provide reliable predictions of yeast spoilage in yogurt with and without bioprotective culture.

View Article and Find Full Text PDF