MEDIATOR16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots.

New Phytol

Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phosphate (P ) is a critical macronutrient for the biochemical and molecular functions of cells. Under phosphate limitation, plants manifest adaptative strategies to increase phosphate scavenging. However, how low phosphate sensing links to the transcriptional machinery remains unknown. The role of the MEDIATOR (MED) transcriptional co-activator, through its MED16 subunit in Arabidopsis root system architecture remodeling in response to phosphate limitation was assessed. Its critical function acting over the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1)-ALUMINUM-ACTIVATED MALATE TRANSPORT1 (ALMT1) signaling module was tested through a combination of genetic, biochemical, and genome-wide transcriptomic approaches. Root system configuration in response to phosphate scarcity involved MED16 functioning, which modulates the expression of a large set of low-phosphate-induced genes that respond to local and systemic signals in the Arabidopsis root tip, including those directly activated by STOP1. Biomolecular fluorescence complementation analysis suggests that MED16 is required for the transcriptional activation of STOP1 targets, including the membrane permease ALMT1, to increase malate exudation in response to low phosphate. Our results unveil the function of a critical transcriptional component, MED16, in the root adaptive responses to a scarce plant macronutrient, which helps understanding how plant cells orchestrate root morphogenesis to gene expression with the STOP1-ALMT1 module.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.16989DOI Listing

Publication Analysis

Top Keywords

local systemic
8
phosphate
8
phosphate scarcity
8
phosphate limitation
8
low phosphate
8
arabidopsis root
8
root system
8
response phosphate
8
root
5
mediator16 orchestrates
4

Similar Publications

From Gut Inflammation to Cardiovascular Conflagration: Mapping IBD's Cardiometabolic Risks.

Curr Atheroscler Rep

September 2025

Division of Gastroenterology and Hepatology, Lynda K. and David M. Underwood Center for Digestive Health, Houston Methodist Hospital, Houston, TX, USA.

Purpose Of Review: This review aims to characterize the known cardiovascular (CV) manifestations associated with inflammatory bowel disease (IBD) and the underlying mechanisms driving these associations.

Recent Findings: Gut dysbiosis, a hallmark of patients with IBD, can result in both local and systemic inflammation, thereby potentially increasing the risk of cardiovascular disease (CVD) in the IBD population. Micronutrient deficiencies, anemia, and sarcopenia independently increase the risk of CVD and are frequent comorbidities of patients with IBD.

View Article and Find Full Text PDF

Background: Pelvic and acetabular fractures, often resulting from high-impact trauma, pose significant challenges due to extensive blood loss and complex surgical procedures. Tranexamic acid (TXA), widely used in elective orthopedic surgeries, offers a potential strategy for managing blood loss. However, its efficacy and safety in pelvic-acetabular trauma surgeries have shown inconsistent results in prior studies.

View Article and Find Full Text PDF

Background: Induced sputum cell count is crucial for assessing airway inflammatory phenotypes. This study investigated how aspirin-induced bronchospasm affects sputum cell counts in patients with nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD), comparing systemic versus local aspirin administration.

Methods: Seventy-eight patients with N-ERD and 39 with aspirin-tolerant asthma (ATA) participated.

View Article and Find Full Text PDF

Myopathology and Immune Profile of Granulomatous Myositis in Sarcoid Myopathy.

Neuropathol Appl Neurobiol

October 2025

Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.

Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.

View Article and Find Full Text PDF

Amyloidosis encompasses a spectrum of rare disorders characterized by extracellular amyloid deposition. Achieving an accurate early diagnosis of systemic amyloidosis necessitates biopsy-specific pathological evaluation. Formalin-fixed, paraffin-embedded liver biopsy specimens were examined using Congo red staining, electron microscopy, immunohistochemistry (IHC), immunofluorescence, and Congo red-assisted laser microdissection with mass spectrometry (LMD/MS).

View Article and Find Full Text PDF