98%
921
2 minutes
20
In dyadic motor learning, pairs of people learn the same motion while their limbs are loosely coupled together using haptic devices. Such coupled learning has been shown to outperform solo learning (including robot-guided learning) for simple one-degree-of-freedom tasks. However, results from more complex tasks are limited and sometimes conflicting. We thus evaluated coupled learning in a two-degree-of-freedom tracking task where participants also had to compensate for a simple force field. Participant pairs were split into two groups: an experiment group that experienced a compliant haptic coupling between participants' hands and a control group that did not. The study protocol consisted of 70 repetitions of 18.9-second tracking trials: 10 initial solo trials with no coupling, 50 "learning" trials (where participants in the experiment group were coupled), and 10 final solo trials with no coupling. The experiment group (coupled) improved their solo tracking performance both in the presence (p = 0.008) and absence (p <; 0.001) of the force field; however, the control group (no coupling) only improved their solo performance in the absence of the force field (p <; 0.001) but not in the presence of the field (p = 0.81). This suggests that dyadic motor learning can outperform solo learning for two-dimensional tracking motions in the presence of a simple force field, though the mechanism by which learning is improved is not yet clear.Clinical Relevance-As motor learning is critical for applications such as motor rehabilitation, dyadic training could be used to achieve a better overall outcome and a faster learning speed in these applications compared to solo training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC44109.2020.9176261 | DOI Listing |
J Am Chem Soc
September 2025
Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Guangdong-Hongkong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices and Department of Chemistry, S
Postsynthetic modification (PSM) is a powerful strategy for tailoring the structure and functionality of covalent organic frameworks (COFs). In this work, we present a novel enzymatic PSM strategy for functional group engineering within COFs. By taking advantage of enzymatic catalysis, 2-hydroxyethylthio (-S-EtOH) and ethylthio (-S-Et) groups were covalently implanted within the COF pore channels with high grafting efficiency under ambient aqueous conditions, highlighting the mild, efficient, and ecofriendly nature of this approach.
View Article and Find Full Text PDFNature
September 2025
Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.
View Article and Find Full Text PDFJ Neurosci
September 2025
Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada, B3H4R2
At the glutamatergic synapses between rod photoreceptors and ON-type bipolar cells, neurotransmitter is detected by the postsynaptic metabotropic glutamate receptor mGluR6. This receptor forms trans-synaptic interactions with ELFN1, a presynaptic cell adhesion molecule expressed in rods, and ELFN1 is important for mGluR6 localization at bipolar cell dendritic tips. Here, we show that in mice of either sex lacking mGluR6, the presynaptic localization of ELFN1 is disrupted.
View Article and Find Full Text PDFBiol Pharm Bull
September 2025
Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.
Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).
View Article and Find Full Text PDFInt Heart J
September 2025
Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences.
The pharmacological blockade of mineralocorticoid receptors (MR) is a potential therapeutic approach to reduce cardiovascular complications. Recent studies suggest that MR blockers affect several extrarenal tissues, including vascular function. We investigated the effects of a novel non-steroidal selective MR blocker, esaxerenone, on vascular function and atherogenesis.
View Article and Find Full Text PDF