98%
921
2 minutes
20
Background: Obstructive sleep apnea (OSA) has been linked to an increase risk of dementia. Few studies have cross-sectionally examined whether clinically-confirmed OSA is associated with a higher brain amyloid burden.
Objective: The aim of this study was to compare brain amyloid burden in individuals with untreated OSA and healthy controls, and explore associations between amyloid burden and polysomnographic and subjective measures of sleep, demographics, and mood.
Methods: Thirty-four individuals with OSA (mean age 57.5±4.1 y; 19 males) and 12 controls (mean age 58.5±4.2 y; 6 males) underwent a clinical polysomnogram and a 11C-PiB positron emission tomography (PET) scan to quantify amyloid burden.
Results: Amyloid burden was elevated in the OSA group relative to controls, and was significantly higher in those with severe OSA relative to mild/moderate OSA. Correlation analyses indicated that higher amyloid burden was associated with a higher Non-REM apnea hypopnea index, poorer sleep efficiency, and less time spent in stage N3 sleep, when controlling for age.
Conclusion: Severe OSA is associated with a modest elevation of brain amyloid, the significance of which should be further investigated to explore the implications for dementia risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-200571 | DOI Listing |
Neurology
October 2025
Department of Radiology, Mayo Clinic, Rochester, MN.
Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.
Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).
Alzheimers Dement
September 2025
Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, China.
Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.
View Article and Find Full Text PDFGeroscience
September 2025
Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
The aging population worldwide faces an increasing burden of age-related conditions, with Alzheimer's disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast Saccharomyces cerevisiae to screen a library of 1760 FDA-approved compounds, both with and without rapamycin, to assess potential synergistic effects on yeast growth.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFRadiology
September 2025
Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Md.
Background Elevated brain iron is a potential marker for neurodegeneration, but its role in predicting onset of mild cognitive impairment (MCI) and prospective cognitive trajectories remains unclear. Purpose To investigate how brain iron and amyloid-β (Aβ) levels, measured using quantitative susceptibility mapping (QSM) MRI and PET, help predict MCI onset and cognitive decline. Materials and Methods In this prospective study conducted between January 2015 and November 2022, cognitively unimpaired older adults underwent baseline QSM MRI.
View Article and Find Full Text PDF