98%
921
2 minutes
20
Background: Proctitis is an inflammation of the rectum and may be induced by radiation treatment for cancer. The genetic heritability of developing radiotoxicity and prior role of genetic variants as being associated with side-effects of radiotherapy necessitates further investigation for underlying molecular mechanisms. In this study, we investigated gene expression regulated by genetic variants, and copy number variation in prostate cancer survivors with radiotoxicity.
Methods: We investigated proctitis as a radiotoxic endpoint in prostate cancer patients who received radiotherapy (n = 222). We analyzed the copy number variation and genetically regulated gene expression profiles of whole-blood and prostate tissue associated with proctitis. The SNP and copy number data were genotyped on Affymetrix® Genome-wide Human SNP Array 6.0. Following QC measures, the genotypes were used to obtain gene expression by leveraging GTEx, a reference dataset for gene expression association based on genotype and RNA-seq information for prostate (n = 132) and whole-blood tissue (n = 369).
Results: In prostate tissue, 62 genes were significantly associated with proctitis, and 98 genes in whole-blood tissue. Six genes - CABLES2, ATP6AP1L, IFIT5, ATRIP, TELO2, and PARD6G were common to both tissues. The copy number analysis identified seven regions associated with proctitis, one of which (ALG1L2) was also associated with proctitis based on transcriptomic profiles in the whole-blood tissue. The genes identified via transcriptomics and copy number variation association were further investigated for enriched pathways and gene ontology. Some of the enriched processes were DNA repair, mitochondrial apoptosis regulation, cell-to-cell signaling interaction processes for renal and urological system, and organismal injury.
Conclusions: We report gene expression changes based on genetic polymorphisms. Integrating gene-network information identified these genes to relate to canonical DNA repair genes and processes. This investigation highlights genes involved in DNA repair processes and mitochondrial malfunction possibly via inflammation. Therefore, it is suggested that larger studies will provide more power to infer the extent of underlying genetic contribution for an individual's susceptibility to developing radiotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530964 | PMC |
http://dx.doi.org/10.1186/s12885-020-07457-1 | DOI Listing |
Mol Genet Genomic Med
September 2025
Department of Maternal-Fetal Medicine, Augusta University, Augusta, Georgia, USA.
Introduction: Spinal muscular atrophy (SMA), caused by pathogenic variants in the survival motor neuron (SMN) gene, is the most common genetic cause of mortality in children under the age of two. Prior reports of obstetric sonograms performed in pregnancies with severe forms of fetal SMA have discrepant findings that may stem from a failure to account for the SMN2 copy number.
Methods: We present a neonate diagnosed with SMA type 0 postnatally (0SMN1/1SMN2 genotype).
JDS Commun
September 2025
Livestock Improvement Corporation Ltd., Newstead, Hamilton 3240, New Zealand.
SLICK1 is an allelic variant of the prolactin receptor () that is found in Senepol beef cattle. The presence of a single copy of this allele produces a short hair coat and confers heat tolerance. We aimed to determine the effect of 2 copies of this allele on milking performance of dairy cattle.
View Article and Find Full Text PDFBioimpacts
August 2025
Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Mitochondrial DNA (mtDNA) copy number variations have been reported in multiple human cancers. Previous studies indicate that mitochondrial retrograde signaling regulates , which plays a key role in tumorigenesis, including regulating apoptosis antagonizing transcription factor (). This study investigates the expression of and in relation to mtDNA copy number in invasive ductal carcinoma (IDC) of the breast.
View Article and Find Full Text PDFMol Ecol Resour
September 2025
College of Life Sciences, Henan Normal University, Xinxiang, China.
Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous class II transposable elements prevalent in eukaryotic genomes, contributing to various genomic and genic functions in plants. However, research on MITEs mainly targets a few species, limiting a comprehensive understanding and systematic comparison of MITEs in plants. Here, we developed a highly sensitive MITE annotation pipeline with a low false positive rate and applied it to 207 high-quality plant genomes.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Diagnosis and Treatment Center for Children, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin Province, China.
Rationale: Phelan-McDermid syndrome, also known as chromosome 22q13.3 deletion syndrome, is a genetic disorder primarily caused by a chromosome 22q13.3 deletion or mutation.
View Article and Find Full Text PDF