Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We describe the convergent synthesis of a 5-O-β-D-ribofuranosyl-based apramycin derivative (apralog) that displays significantly improved antibacterial activity over the parent apramycin against wild-type ESKAPE pathogens. In addition, the new apralog retains excellent antibacterial activity in the presence of the only aminoglycoside modifying enzyme (AAC(3)-IV) acting on the parent, without incurring susceptibility to the APH(3') mechanism that disables other 5-O-β-D-ribofuranosyl 2-deoxystreptamine type aminoglycosides by phosphorylation at the ribose 5-position. Consistent with this antibacterial activity, the new apralog has excellent 30 nM activity (IC ) for the inhibition of protein synthesis by the bacterial ribosome in a cell-free translation assay, while retaining the excellent across-the-board selectivity of the parent for inhibition of bacterial over eukaryotic ribosomes. Overall, these characteristics translate into excellent in vivo efficacy against E. coli in a mouse thigh infection model and reduced ototoxicity vis à vis the parent in mouse cochlear explants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7855274PMC
http://dx.doi.org/10.1002/cmdc.202000726DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
12
activity
5
advanced apralog
4
apralog increased
4
increased in vitro
4
in vitro in vivo
4
in vivo activity
4
activity gram-negative
4
gram-negative pathogens
4
pathogens reduced
4

Similar Publications

Lucilia sericata (Meigen, 1826) maggot excretions/secretions (ES) have demonstrated anti-inflammatory and wound healing potential on corneal epithelial cells. This study aimed to evaluate the in vitro antibacterial potential of the ES against clinically relevant Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus epidermidis in the presence of human tear fluid. The ES was collected from sterile first- and second-instar L.

View Article and Find Full Text PDF

Therapeutic Efficacy and Drug Metabolism of Griseorhodin A Induced by a Co-culture of Actinomycete Strain TMPU-20A002 and Mycobacterium smegmatis in Silkworm Infection Models.

Chem Pharm Bull (Tokyo)

September 2025

Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.

In screening for antibacterial agents from co-cultures of Mycobacterium smegmatis and microbial resources, such as actinomycetes and fungi, the known hydroxyquinone antibiotic griseorhodin A (1) was isolated from a co-culture of actinomycete strain TMPU-20A002 and M. smegmatis. Compound 1 exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE), with minimum inhibitory concentrations of 0.

View Article and Find Full Text PDF

The demand for previously undescribed antimicrobial agents is increasing due to the emergence of resistant plant pathogens. One of the untapped sources of new biopesticides is the plant kingdom. A bioassay-guided process comprising TLC-Bacillus subtilis bioassay, TLC-MS, and preparative flash column chromatography enabled the isolation of five previously undescribed antimicrobial labdane diterpenes (graminifolins A-E, 1-5) from the flower extract of grass-leaved goldenrod (Euthamia graminifolia, formerly Solidago graminifolia).

View Article and Find Full Text PDF

Injectable and tissue adhesive chrysomycin A-laden chitosan hydrogel depot for MRSA-infected wound healing and tumor recurrence prevention.

Int J Biol Macromol

September 2025

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China. Electronic address:

Tumor surgery often leads to tumor residue, tissue defects, and drug-resistant bacterial infections, resulting in high recurrence rates and chronic wounds. In this study, an injectable hydrogel was synthesized using glycidyl trimethyl ammonium chloride-chitosan (GCh) and formylbenzoic acid-modified chrysomycin A (CA)-loaded F127 micelles (F127FA-CA). The formation of the hydrogel is achieved through Schiff base conjugation, which occurs between the amino groups present in GCh and the aldehyde groups located on the micelle surfaces.

View Article and Find Full Text PDF

Porous SiO/ZnO-carboxymethyl cellulose composite hydrogels for enhanced hemostatic efficacy and antibacterial activity.

Int J Biol Macromol

September 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China. Electronic address:

The development of effective hemostatic and antibacterial dressings remains a critical challenge in wound management. We report the design and fabrication of novel porous composite hydrogels composed of carboxymethyl cellulose (CMC), silica (SiO), and zinc oxide nanoparticles (ZnO NPs) . The incorporation of SiO and ZnO NPs into the CMC hydrogel matrix resulted in a unique multi-scale porous structure, characterized by interconnected holes of various sizes, which significantly enhanced the hydrogel's liquid absorption capacity and mechanical strength.

View Article and Find Full Text PDF