Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Objective measures of physical activity (PA) derived from wrist-worn accelerometers are compared with traditional risk factors in terms of mortality prediction performance in the UK Biobank.

Method: A subset of participants in the UK Biobank study wore a tri-axial wrist-worn accelerometer in a free-living environment for up to 7 days. A total of 82 304 individuals over the age of 50 (439 707 person-years of follow-up, 1959 deaths) had both accelerometry data that met specified quality criteria and complete data on a set of traditional mortality risk factors. Predictive performance was assessed using cross-validated Concordance (C) for Cox regression models. Forward selection was used to obtain a set of best predictors of mortality.

Results: In univariate Cox regression, age was the best predictor of all-cause mortality (C = 0.681) followed by 12 PA predictors, led by minutes of moderate-to-vigorous PA (C = 0.661) and total acceleration (C = 0.661). Overall, 16 of the top 20 predictors were objective PA measures (C = 0.578-0.661). Using a threshold of 0.001 improvement in Concordance, the Concordance for the best model that did not include PA measures was 0.735 (9 covariates) compared with 0.748 (12 covariates) for the best model with PA variables (p-value < .001).

Conclusions: Objective measures of PA derived from accelerometry outperform traditional predictors of all-cause mortality in the UK Biobank except age and substantially improve the prediction performance of mortality models based on traditional risk factors. Results confirm and complement previous findings in the National Health and Nutrition Examination Survey (NHANES).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277083PMC
http://dx.doi.org/10.1093/gerona/glaa250DOI Listing

Publication Analysis

Top Keywords

objective measures
12
risk factors
12
predictive performance
8
physical activity
8
mortality biobank
8
traditional risk
8
prediction performance
8
cox regression
8
all-cause mortality
8
best model
8

Similar Publications

Background: Sedentary behavior (SB) and the absence of physical activity (PA) have become increasingly prevalent in modern societies due to changes in physical and social-environmental conditions, particularly in university students. This cross-sectional study aimed to describe and identify the prevalence and correlates of self-reported and accelerometer-determined SB and PA of German university students.

Methods: A convenience sample of 532 students participated in a questionnaire survey during the lecture period in the summer term 2018.

View Article and Find Full Text PDF

Simulated metabolic profiles reveal biases in pathway analysis methods.

Metabolomics

September 2025

Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.

Introduction: Initially developed for transcriptomics data, pathway analysis (PA) methods can introduce biases when applied to metabolomics data, especially if input parameters are not chosen with care. This is particularly true for exometabolomics data, where there can be many metabolic steps between the measured exported metabolites in the profile and internal disruptions in the organism. However, evaluating PA methods experimentally is practically impossible when the sample's "true" metabolic disruption is unknown.

View Article and Find Full Text PDF

Purpose: Amino acid PET with [F]-fluoroethylthyrosine ([F]FET-PET) is frequently utilized in gliomas. Most studies on prognostication based on amino acid PET comprise mixed cohorts of brain tumors with low- and high-grade features. The objective of this study was to assess the potential prognostic value of [F]FET-PET-based markers in the group of grade 2 adult-type diffuse gliomas, as defined by the WHO CNS 2021 classification.

View Article and Find Full Text PDF

Cognitive decline is common in multiple sclerosis (MS), although neural mechanisms are not fully understood. The objective was to investigate the impact of mild cognitive impairment (MCI) on the relationship between resting state functional connectivity (RSFC) and cognitive function in older adults with multiple sclerosis (OAMS) and age matched healthy controls. Participants underwent magnetic resonance imaging (MRI) scans and cognitive assessments.

View Article and Find Full Text PDF