Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Behavioral observations support clinical in-depth phenotyping but phenotyping and pattern recognition are affected by training background. As Attention Deficit Hyperactivity Disorder, Restless Legs syndrome/Willis Ekbom disease and medication induced activation syndromes (including increased irritability and/or akathisia), present with hyperactive-behaviors with hyper-arousability and/or hypermotor-restlessness (H-behaviors), we first developed a non-interpretative, neutral pictogram-guided phenotyping language (PG-PL) for describing body-segment movements during sitting.

Methodology & Results: The PG-PL was applied for annotating 12 1-min sitting-videos (inter-observer agreements >85%->97%) and these manual annotations were used as a ground truth to develop an automated algorithm using OpenPose, which locates skeletal landmarks in 2D video. We evaluated the algorithm's performance against the ground truth by computing the area under the receiver operator curve (>0.79 for the legs, arms, and feet, but 0.65 for the head). While our pixel displacement algorithm performed well for the legs, arms, and feet, it predicted head motion less well, indicating the need for further investigations.

Conclusion: This first automated analysis algorithm allows to start the discussion about distinct phenotypical characteristics of H-behaviors during structured behavioral observations and may support differential diagnostic considerations via in-depth phenotyping of sitting behaviors and, in consequence, of better treatment concepts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpsychires.2020.08.033DOI Listing

Publication Analysis

Top Keywords

ground truth
12
behavioral observations
8
observations support
8
in-depth phenotyping
8
legs arms
8
arms feet
8
fidgety philip's
4
philip's ground
4
truth ours?
4
ours? creation
4

Similar Publications

Petit-spot volcanism plays a critical role in the metasomatism of oceanic plates prior to subduction and in their recycling into the deep mantle. The extent of metasomatism depends on the number and volume of petit-spot volcanic edifices and intrusions, making precise identification of petit-spot volcanic fields essential. However, conventional methods based on seafloor topography and acoustic backscatter intensity alone have limitations in accurately delineating these features.

View Article and Find Full Text PDF

Purpose: To evaluate inter-grader variability in posterior vitreous detachment (PVD) classification in patients with epiretinal membrane (ERM) and macular hole (MH) on spectral-domain optical coherence tomography (SD-OCT) and identify challenges in defining a reliable ground truth for artificial intelligence (AI)-based tools.

Methods: A total of 437 horizontal SD-OCT B-scans were retrospectively selected and independently annotated by six experienced ophthalmologists adopting four categories: 'full PVD', 'partial PVD', 'no PVD', and 'ungradable'. Inter-grader agreement was assessed using pairwise Cohen's kappa scores.

View Article and Find Full Text PDF

Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) is a label-free technique that enables the visualization of the spatial distribution of thousands of ions within biosamples. Data denoising is the computational strategy aimed at enhancing the MSI data quality, providing an effective alternative to experimental methods. However, due to the complex noise pattern inherent in MSI data and the difficulty in obtaining ground truth from noise-free data, achieving reliable denoised images remains challenging.

View Article and Find Full Text PDF

Event-based sensors (EBS), with their low latency and high dynamic range, are a promising means for tracking unresolved point-objects. Conventional EBS centroiding methods assume the generated events follow a Gaussian distribution and require long event streams ($\gt 1$s) for accurate localization. However, these assumptions are inadequate for centroiding unresolved objects, since the EBS circuitry causes non-Gaussian event distributions, and because using long event streams negates the low-latency advantage of EBS.

View Article and Find Full Text PDF