A data-driven approach to a chemotherapy recommendation model based on deep learning for patients with colorectal cancer in Korea.

BMC Med Inform Decis Mak

Department of Computer Engineering, Gachon University, 1342, Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Clinical Decision Support Systems (CDSSs) have recently attracted attention as a method for minimizing medical errors. Existing CDSSs are limited in that they do not reflect actual data. To overcome this limitation, we propose a CDSS based on deep learning.

Methods: We propose the Colorectal Cancer Chemotherapy Recommender (C3R), which is a deep learning-based chemotherapy recommendation model. Our model improves on existing CDSSs in which data-based decision making is not well supported. C3R is configured to study the clinical data collected at the Gachon Gil Medical Center and to recommend appropriate chemotherapy based on the data. To validate the model, we compared the treatment concordance rate with the National Comprehensive Cancer Network (NCCN) Guidelines, a representative set of cancer treatment guidelines, and with the results of the Gachon Gil Medical Center's Colorectal Cancer Treatment Protocol (GCCTP).

Results: For the C3R model, the treatment concordance rates with the NCCN guidelines were 70.5% for Top-1 Accuracy and 84% for Top-2 Accuracy. The treatment concordance rates with the GCCTP were 57.9% for Top-1 Accuracy and 77.8% for Top-2 Accuracy.

Conclusions: This model is significant, i.e., it is the first colon cancer treatment clinical decision support system in Korea that reflects actual data. In the future, if sufficient data can be secured through cooperation among multiple organizations, more reliable results can be obtained.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7510149PMC
http://dx.doi.org/10.1186/s12911-020-01265-0DOI Listing

Publication Analysis

Top Keywords

colorectal cancer
12
treatment concordance
12
cancer treatment
12
chemotherapy recommendation
8
recommendation model
8
based deep
8
clinical decision
8
decision support
8
existing cdsss
8
actual data
8

Similar Publications

Dietary inflammatory index and the risk of colorectal adenomas and cancer: a systematic review and dose-response meta-analysis.

Nutr J

September 2025

Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, Zhejiang Province, China.

Background: The potential association between dietary inflammatory index (DII) and colorectal cancer (CRC) risk, as well as colorectal adenomas (CRA) risk, has been extensively studied, but the findings remain inconclusive. We conducted this systematic review and dose-response meta-analysis to investigate the relationship between the DII and CRC and CRA.

Methods: We comprehensively searched the PubMed, Embase, Cochrane Library, and Web of Science databases for cohort and case-control studies reporting the relationship between DII and CRA, or between DII and CRC, as of 15 July 2025.

View Article and Find Full Text PDF

Background: The primary treatment for colorectal cancer, which is very prevalent, is surgery. Anastomotic leaking poses a significant risk following surgery. Intestinal perfusion can be objectively and instantly assessed with indocyanine green fluorescence imaging, which may lower leakage rates and enhance surgical results.

View Article and Find Full Text PDF

Background: To evaluate predictors of outcomes in colorectal liver metastases (CLM) patients undergoing 90Y radioembolization (TARE), focusing on the impact of tumor absorbed dose.

Materials And Methods: Patients' characteristics and dosimetry assessments were analyzed in 231 patients undergoing 329 TARE sessions from 09/2009 to 07/2023. Response was assessed using RECIST1.

View Article and Find Full Text PDF