Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Invasive Staphylococcus aureus infections are a common cause of morbidity and mortality in children. In the early 2000's the proportion of infections due the methicillin-resistant S. aureus (MRSA) increased rapidly. We described the clinical and molecular epidemiology of invasive S. aureus disease in a pediatric population.

Methods: We prospectively identified children in Utah with invasive S. aureus infections. Medical records were reviewed to determine diagnosis and clinical characteristics. Isolates were genotyped using multi-locus sequence typing. The presence of genes encoding the Panton-Valentine leukocidin (PVL) was determined using polymerase chain reaction.

Results: Over a 4-year period between January 2009 and December 2012, we identified 357 children, hospitalized at Primary Children's Hospital, with invasive S. aureus infections and isolates available for the study. Methicillin-susceptible S. aureus (MSSA) caused 79% of disease, while MRSA caused only 21% of disease. Mortality associated with invasive S. aureus infection was 3.6%. The most common diagnoses were osteoarticular infections (38%) followed by central line associated blood stream infections (19%) and pneumonia (12%). We identified 41 multi-locus sequence types. The majority of isolates belonged to 6 predominant clonal complexes (CC5, CC8, CC15, CC30, CC45, CC59). PVL was present in a minority (16%) of isolates, of which most were ST8 MRSA.

Conclusions: MSSA was the primary cause of invasive S. aureus infections at our institution throughout the study period. A limited number of predominant strains accounted for the majority of invasive disease. The classic virulence factor PVL was uncommon in MSSA isolates. Further study is needed to improve our understanding of S. aureus virulence and disease pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500648PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238991PLOS

Publication Analysis

Top Keywords

invasive aureus
20
aureus infections
16
aureus
10
clinical molecular
8
molecular epidemiology
8
invasive
8
epidemiology invasive
8
invasive staphylococcus
8
staphylococcus aureus
8
aureus infection
8

Similar Publications

infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. Clumping factor A (ClfA) displayed on the bacterial surface plays a key role in promoting replication during invasive disease. Decades of research have pointed to a wide array of ligands engaged by ClfA.

View Article and Find Full Text PDF

Unlabelled: Methicillin-resistant (MRSA) is a leading cause of endovascular infections, where interactions with endothelial cells play a critical role in pathogenesis. Gp05, a prophage-encoded protein, has previously been implicated in promoting antibiotic persistence by modulating MRSA cellular physiology and evading neutrophil-mediated killing. In this study, we investigated the role of Gp05 in MRSA-endothelial cell interactions, focusing on its impact on bacterial adhesion, invasion, cytotoxicity, and the host inflammatory response.

View Article and Find Full Text PDF

Invasive woodlands and intruding dogs shape the structure of a mesocarnivore guild.

Biol Invasions

September 2025

Ashoka Trust for Research in Ecology and the Environment, Bangalore, Karnataka India.

Unlabelled: Whilst the impacts of individual invasive species are relatively well studied, the combined effects of both plant and animal invasive species on multispecies assemblages are poorly understood. We studied the impact of two invasive species-the mesquite tree, and free-ranging dog, on a guild of native mesocarnivores in the human-dominated grasslands of the Thar desert. We found that the mesquite had varying effects on the mesocarnivore guild, benefiting generalist species such as the golden jackal and jungle cat , while negatively affecting open habitat specialist species such as Indian desert fox , Indian fox , and desert cat .

View Article and Find Full Text PDF

and reciprocally promote their virulence factor secretion and pro-inflammatory effects.

Front Cell Infect Microbiol

September 2025

Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.

Background: Co-infections of and can significantly increase morbidity and mortality. However, the effect of co-existence on virulence factor secretion and pro-inflammatory effects remain elusive.

Methods: We systematically investigated the virulence factors released by and under different culturing conditions using proteomics.

View Article and Find Full Text PDF

Infected wounds remain a major clinical challenge due to bacterial invasion, which disrupts the natural healing cascade through excessive reactive oxygen species (ROS) generation, severe vascular damage, and persistent inflammation. Inspired by the catechol-rich adhesive domains of mussel foot proteins, we developed an extracellular matrix (ECM)-mimetic polyethylene glycol (PEG) hydrogel incorporating polydopamine (PDA)-functionalized zinc oxide nanoparticles (ZnONPs) for infected wound therapy. The amino acid-functionalized PEG hydrogel reproduces ECM-like properties to facilitate cell migration and efficient exudate management; however, its lack of intrinsic antimicrobial activity limits therapeutic efficacy.

View Article and Find Full Text PDF