Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We explore transport properties in a disordered nonlinear chain of classical harmonic oscillators, and thereby identify a regime exhibiting behavior analogous to that seen in quantum many-body-localized systems. Through extensive numerical simulations of this system connected at its ends to heat baths at different temperatures, we computed the heat current and the temperature profile in the nonequilibrium steady state as a function of system size N, disorder strength Δ, and temperature T. The conductivity κ_{N}, obtained for finite length (N), saturates to a value κ_{∞}>0 in the large N limit, for all values of disorder strength Δ and temperature T>0. We show evidence that for any Δ>0 the conductivity goes to zero faster than any power of T in the (T/Δ)→0 limit, and find that the form κ_{∞}∼e^{-B|ln(CΔ/T)|^{3}} fits our data. This form has earlier been suggested by a theory based on the dynamics of multioscillator chaotic islands. The finite-size effect can be κ_{N}<κ_{∞} due to boundary resistance when the bulk conductivity is high (the weak disorder case), or κ_{N}>κ_{∞} due to direct bath-to-bath coupling through bulk localized modes when the bulk is weakly conducting (the strong disorder case). We also present results on equilibrium dynamical correlation functions and on the role of chaos on transport properties. Finally, we explore the differences in the growth and propagation of chaos in the weak and strong chaos regimes by studying the classical version of the out-of-time-ordered commutator.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.022130DOI Listing

Publication Analysis

Top Keywords

transport properties
8
disorder strength
8
strength temperature
8
transport correlations
4
chaos
4
correlations chaos
4
chaos classical
4
classical disordered
4
disordered anharmonic
4
anharmonic chain
4

Similar Publications

Structure, function and assembly of nuclear pore complexes.

Nat Rev Mol Cell Biol

September 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.

The defining property of eukaryotic cells is the storage of heritable genetic material in a nuclear compartment. For eukaryotic cells to carry out the myriad biochemical processes necessary for their function, macromolecules must be efficiently exchanged between the nucleus and cytoplasm. The nuclear pore complex (NPC) - which is a massive assembly of ~35 different proteins present in multiple copies totalling ~1,000 protein subunits and architecturally conserved across eukaryotes - establishes a size-selective channel for regulated bidirectional transport of folded macromolecules and macromolecular assemblies across the nuclear envelope.

View Article and Find Full Text PDF

Beyond Hemoglobin: A Review of Hemocyanin and the Biology of Purple Blood.

Zhongguo Ying Yong Sheng Li Xue Za Zhi

September 2025

PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur - Agra - Delhi, NH#2, Bhauti, Kanpur, Uttar Pradesh, India.

Hemocyanin is dissolved freely in hemolymph, the invertebrate blood substitute, in contrast to haemoglobin, which is encased in red blood cells. When oxygenated, this pigment gives mollusc and arthropod blood its characteristic blue or purple hue. This review article delves into the fascinating biology of hemocyanin, the copper-based oxygen-carrying protein responsible for "purple blood" in many invertebrates, contrasting its characteristics with the more familiar iron-based hemoglobin.

View Article and Find Full Text PDF

Phycobilisome (PBS) is a water-soluble light-harvesting supercomplex found in cyanobacteria, glaucophytes, and rhodophytes. PBS interacts with photosynthetic reaction centers, specifically photosystems II and I (PSII and PSI), embedded in the thylakoid membrane. It is widely accepted that PBS predominantly associates with PSII, which functions as the initial complex in the linear electron transport chain.

View Article and Find Full Text PDF

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.

View Article and Find Full Text PDF