98%
921
2 minutes
20
Graphene oxide (GO), a functional derivative of graphene, is a promising nanomaterial for a variety of optoelectronic applications as it exhibits fluorescence and maintains many of graphene's beneficial physical properties. although other graphene derivatives are chemically plausible and may serve to the benefit of the aforementioned applications, GO remains the one heavily used. the nature of optical behavior of other graphene derivatives has yet to be fully understood and studied. in this work we develop a variety of graphene derivatives and characterize their optical properties concomitantly suggesting a unified model for optical emission in graphene derivatives. in this process we examine the influence of different functional groups on the surface of graphene on its optoelectronic properties. mildly oxidized graphene (oxo-g), nitrated graphene, arylated graphene, brominated graphene, and fluorinated graphene are obtained and characterized via TEM and EDX, FTIR and fluorescence spectroscopies with the latter indicating a potential band gap-derived fluorescence from each of the materials. this suggests that optical properties of graphene derivatives have minimal functional group dependence and are manifested by the localized environments within the flakes. this is confirmed by the hyperchem theoretical modeling of all aforementioned graphene derivatives indicating a similar electronic configuration for all, assessed by the pm3 semi-empirical approach. this work can further serve to describe and predict optical properties of similar graphene-based structures and promote graphene derivatives other than GO for utilization in research and industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abb971 | DOI Listing |
J Appl Toxicol
September 2025
Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea.
Graphene oxide and its derivatives have unique physical and chemical properties with applications in many different fields. However, their biological effects and mechanisms of intracellular toxicity have not been completely clarified. In this study, we investigated the cytotoxic and autophagic activities of graphene oxide and its derivatives in A549 human lung carcinoma cells.
View Article and Find Full Text PDFChem Rec
September 2025
Millenium Institute on Green Ammonia as Energy Vector, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
Ammonia is one of the most important inputs in the global chemical industry, used primarily in fertilizers and explosives. It is increasingly recognized as a potential energy carrier. Its production is dominated by the Haber-Bosch process, which requires high energy consumption and significant capital investment, and contributes significantly to greenhouse gas emissions.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain.
The mechanical properties of graphene are investigated using classical molecular dynamics simulations as a function of temperature T and external stress τ. The elastic response is characterized by calculating elastic constants via three complementary methods: (i) numerical derivatives of stress-strain curves, (ii) analysis of cell fluctuation correlations, and (iii) phonon dispersion analysis. Simulations were performed with two interatomic models: an empirical potential and a tight-binding electronic Hamiltonian.
View Article and Find Full Text PDFChem Rec
September 2025
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.
The synthesis of biomass-derived nanocarbons via ball milling has emerged as an innovative, sustainable, and cost-effective strategy in the field of nanotechnology. This review comprehensively explores the principles, mechanisms, and process parameters that influence the production of high-quality nanocarbons from biomass using ball milling. This process efficiently transforms biomass residues into nanoscale carbon, including graphene, carbon nanotubes, and nanofibers, with tunable physicochemical properties tailored for advanced applications.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department of Bioengineering, Yildiz Technical University, Istanbul, 34722, Turkey.
Conductive nanocomposite hydrogels (CNHs) represent a promising tool in neural tissue engineering, offering tailored electroactive microenvironments to address the complex challenges of neural repair. This systematic scoping review, conducted in accordance with PRISMA-ScR guidelines, synthesizes recent advancements in CNH design, functionality, and therapeutic efficacy for central and peripheral nervous system (CNS and PNS) applications. The analysis of 125 studies reveals a growing emphasis on multifunctional materials, with carbon-based nanomaterials (CNTs, graphene derivatives; 36.
View Article and Find Full Text PDF